{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tail Bout Classification\n", "\n", "**In this notebook, we will walk through the process of classifying tail bouts.**\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Loading dependencies" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib.gridspec as gridspec\n", "\n", "from megabouts.tracking_data import TrackingConfig, load_example_data, FullTrackingData\n", "from megabouts.config import TailPreprocessingConfig, TrajPreprocessingConfig\n", "from megabouts.preprocessing import TailPreprocessing, TrajPreprocessing\n", "from megabouts.config import TailSegmentationConfig\n", "from megabouts.segmentation import Segmentation, align_traj_array\n", "from megabouts.classification import TailBouts, BoutClassifier\n", "from megabouts.utils import bouts_category_color, bouts_category_name_short" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Check if pytorch is running on cpu or gpu:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cpu\n" ] } ], "source": [ "import torch\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "print(device)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Loading tracking data and preprocessing similar to [tutorial_Tail_Preprocessing](./tutorial_Tail_Preprocessing.ipynb) and [tutorial_Traj_Preprocessing](./tutorial_Traj_Preprocessing.ipynb)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df_recording, fps, mm_per_unit = load_example_data(\"fulltracking_posture\")\n", "\n", "tracking_cfg = TrackingConfig(fps=fps, tracking=\"full_tracking\")\n", "\n", "head_x = df_recording[\"head_x\"].values * mm_per_unit\n", "head_y = df_recording[\"head_y\"].values * mm_per_unit\n", "head_yaw = df_recording[\"head_angle\"].values\n", "tail_angle = df_recording.filter(like=\"tail_angle\").values\n", "\n", "tracking_data = FullTrackingData.from_posture(\n", " head_x=head_x, head_y=head_y, head_yaw=head_yaw, tail_angle=tail_angle\n", ")\n", "\n", "tail_preprocessing_cfg = TailPreprocessingConfig(fps=tracking_cfg.fps)\n", "tail_df_input = tracking_data.tail_df\n", "tail = TailPreprocessing(tail_preprocessing_cfg).preprocess_tail_df(tail_df_input)\n", "\n", "traj_preprocessing_cfg = TrajPreprocessingConfig(fps=tracking_cfg.fps)\n", "traj_df_input = tracking_data.traj_df\n", "traj = TrajPreprocessing(traj_preprocessing_cfg).preprocess_traj_df(traj_df_input)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
angle...angle_smoothvigorno_tracking
segments...segments
0123456789...23456789
0-0.101865-0.092813-0.107645-0.110575-0.047699-0.145887-0.130414-0.058892-0.128705NaN...-0.051057-0.055168-0.055898-0.061701-0.061091-0.069420-0.1150140.000183NaNTrue
1-0.082618-0.087957-0.096951-0.092459-0.119418-0.043354-0.099788-0.101741-0.171555NaN...-0.046070-0.052906-0.056578-0.063577-0.062286-0.064780-0.0916170.000321NaNTrue
2-0.093377-0.095235-0.094292-0.105936-0.073785-0.084193-0.144378-0.112398-0.042585NaN...-0.041909-0.050905-0.056916-0.064832-0.062943-0.060658-0.0722460.000430NaNTrue
3-0.092590-0.083650-0.100938-0.088223-0.097370-0.099559-0.101538-0.091272-0.021459NaN...-0.038574-0.049166-0.056913-0.065467-0.063063-0.057053-0.0569000.000512NaNTrue
4-0.086849-0.081982-0.096705-0.118475-0.046264-0.136459-0.115412-0.085300-0.015487NaN...-0.036064-0.047688-0.056569-0.065483-0.062646-0.053965-0.0455790.000565NaNTrue
\n", "

5 rows × 32 columns

\n", "
" ], "text/plain": [ " angle \\\n", " segments \n", " 0 1 2 3 4 5 6 \n", "0 -0.101865 -0.092813 -0.107645 -0.110575 -0.047699 -0.145887 -0.130414 \n", "1 -0.082618 -0.087957 -0.096951 -0.092459 -0.119418 -0.043354 -0.099788 \n", "2 -0.093377 -0.095235 -0.094292 -0.105936 -0.073785 -0.084193 -0.144378 \n", "3 -0.092590 -0.083650 -0.100938 -0.088223 -0.097370 -0.099559 -0.101538 \n", "4 -0.086849 -0.081982 -0.096705 -0.118475 -0.046264 -0.136459 -0.115412 \n", "\n", " ... angle_smooth \\\n", " ... segments \n", " 7 8 9 ... 2 3 4 5 \n", "0 -0.058892 -0.128705 NaN ... -0.051057 -0.055168 -0.055898 -0.061701 \n", "1 -0.101741 -0.171555 NaN ... -0.046070 -0.052906 -0.056578 -0.063577 \n", "2 -0.112398 -0.042585 NaN ... -0.041909 -0.050905 -0.056916 -0.064832 \n", "3 -0.091272 -0.021459 NaN ... -0.038574 -0.049166 -0.056913 -0.065467 \n", "4 -0.085300 -0.015487 NaN ... -0.036064 -0.047688 -0.056569 -0.065483 \n", "\n", " vigor no_tracking \n", " \n", " 6 7 8 9 \n", "0 -0.061091 -0.069420 -0.115014 0.000183 NaN True \n", "1 -0.062286 -0.064780 -0.091617 0.000321 NaN True \n", "2 -0.062943 -0.060658 -0.072246 0.000430 NaN True \n", "3 -0.063063 -0.057053 -0.056900 0.000512 NaN True \n", "4 -0.062646 -0.053965 -0.045579 0.000565 NaN True \n", "\n", "[5 rows x 32 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tail.df.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Segmentation using tail vigor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Set the threshold to 20 and apply segmentation to `tail.vigor`:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "tail_segmentation_cfg = TailSegmentationConfig(fps=tracking_cfg.fps, threshold=20)\n", "segmentation_function = Segmentation.from_config(tail_segmentation_cfg)\n", "segments = segmentation_function.segment(tail.vigor)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* We collect the segmented bouts using `extract_tail_array` and `extract_traj_array`:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "tail_array = segments.extract_tail_array(tail_angle=tail.angle_smooth)\n", "traj_array = segments.extract_traj_array(\n", " head_x=traj.x_smooth, head_y=traj.y_smooth, head_angle=traj.yaw_smooth\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The arrays contain tail and trajectory data aligned to bout onset:\n", "- `tail_array`: Tail angles for each bout (shape: n_bouts × n_segments × n_timepoints)\n", "- `traj_array`: Trajectory data for each bout (shape: n_bouts × 3 × n_timepoints). The 3 dimensions are: x position, y position, and heading angle\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(766, 10, 140) (766, 3, 140)\n" ] } ], "source": [ "print(tail_array.shape, traj_array.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Optional: Align trajectory data for pre-segmented bouts:\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "If you're loading pre-segmented data instead of using the segmentation pipeline above,\n", "you'll need to align the trajectory data to the bout onset. This ensures all bouts\n", "are properly oriented relative to their starting position and heading.\n", "\"\"\"\n", "\n", "# Align trajectory data relative to bout onset\n", "traj_array = align_traj_array(\n", " traj_array=traj_array,\n", " idx_ref=0, # Align to bout onset\n", " bout_duration=tail_segmentation_cfg.bout_duration,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running classifier on the segmented bouts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Load the classifier, we recommend using `exclude_CS=True`. This will avoid assigning bouts to Capture Swim categories if there was no prey during the recording:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "E:\\Code\\megabouts\\megabouts\\megabouts\\classification\\classification.py:111: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", " torch.load(transformer_weights_path, map_location=torch.device(self.device))\n" ] } ], "source": [ "classifier = BoutClassifier(tracking_cfg, tail_segmentation_cfg, exclude_CS=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Apply the classfier:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "classif_results = classifier.run_classification(\n", " tail_array=tail_array, traj_array=traj_array\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Now we re-segment the bouts using the first half beat as a reference, this improves the alignement of the tail bouts, for this we use the `align_to_onset=False` option:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "segments.set_HB1(classif_results[\"first_half_beat\"])\n", "\n", "tail_array = segments.extract_tail_array(\n", " tail_angle=tail.angle_smooth, align_to_onset=False\n", ")\n", "\n", "traj_array = segments.extract_traj_array(\n", " head_x=traj.x_smooth,\n", " head_y=traj.y_smooth,\n", " head_angle=traj.yaw_smooth,\n", " align_to_onset=False,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* We can use the TailBouts class to store the results of the classifier:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# Format Output:\n", "bouts = TailBouts(\n", " segments=segments,\n", " classif_results=classif_results,\n", " tail_array=tail_array,\n", " traj_array=traj_array,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Let's display the bouts classified, we only display bouts with a classification probability greater than 0.5:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAFgCAYAAAD6s7MkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZQk6VXe/UTuW229j2Y0aEZCq2W0gbWAJYSRQWIRAoZNeASIg5Zjg2WzWCCE9QHmAB/gDw7IGAOWZpCFQDKIMUKAJUuaQftoGM3SPb3WnpV7ZuSeEfH9UX7euhEVmZVZ3VWVWX1/5/Tp7sqsqKh8492e97n3Wp7neVAURVEURVEURVEURVGUG0zkqG9AURRFURRFURRFURRFOZ6o8KQoiqIoiqIoiqIoiqIcCCo8KYqiKIqiKIqiKIqiKAeCCk+KoiiKoiiKoiiKoijKgaDCk6IoiqIoiqIoiqIoinIgqPCkKIqiKIqiKIqiKIqiHAgqPCmKoiiKoiiKoiiKoigHggpPiqIoiqIoiqIoiqIoyoGgwpOiKIqiKIqiKIqiKIpyIBwr4emzn/0sLMuCZVl417veNfK9TzzxBN70pjfhK7/yK5FKpZDL5XDnnXfiVa96FX7xF38RFy9ePKS7VkbxsY99DN/5nd+JW2+9FYlEAktLS3jGM56B7/7u78bv/M7voFarmfeurKzgd3/3d/GGN7wBz3rWsxCJRGBZFj7+8Y8f3S+ghDJuu7qui09+8pP4qZ/6KbzwhS/E3NwckskknvrUp+JNb3oTrly5csS/iQLAjLvyTzwex5Oe9CR853d+Jx544IGh3/vBD34Qr371q3HmzBnE43GcOnUKz3nOc/CDP/iD+IM/+AP0er1D/E2UcWAby3+P++cpT3nK0d78TYRsp2H88R//MSzLwhve8IaR73vLW94Cy7IQiURw7do132uveMUrJn4Orl69ep2/nTKM4GcdiUSwsLCAF7/4xfit3/ot9Pt9AMDVq1cnbrdXvOIVR/vL3SRMsvYNon31+FAul/ELv/ALeNGLXoSlpSWk02nccccduPvuu/EP//APR317CsabZ8m4820Qz/Pw/ve/H6973evw5Cc/GalUCnNzc3jOc56DN7/5zfjsZz+7jzs/GmJHfQM3kve+973m3/feey9+/ud/PvR9H/3oR/Ha174W7XYbt9xyC175yldicXERq6ur+NSnPoW//du/RSwWw8/8zM8c1q0rIbzrXe/CO9/5TgDAs571LPyzf/bPEI/Hcf78eXzwgx/En/3Zn+FFL3oRXvziFwMA/vzP/xz/9t/+26O8ZWUMJmnXy5cv45//838OADh37hxe+cpXIhqN4rOf/Sz+y3/5L/iTP/kT/K//9b/wtV/7tUf5Kyn/l7vvvtv8u9Fo4KGHHsIHP/hBfOhDH8I999yD7//+7/e9/0d+5Efwh3/4hwCA5z//+Xj5y18Oz/PwyCOP4J577sE999yDb/mWb8G5c+cO9fdQxke2OfnUpz6FS5cu4au+6qvwvOc9z/faqVOnDunOlBtFr9fD+9//fgDbC+B7770Xb3/7283r3/RN37RLULx48SLuv/9+nD17Ft/0Td+065q5XO5A71nZ6ZuO4+Dq1at44IEH8JnPfAZ/9Vd/hY985CPI5XKh/fcjH/kI8vk8Xvayl+FpT3ua77VnPvOZh3LvNzOTrn0l2lePD3//93+P7/7u70alUsHJkyfxdV/3dchkMnjsscfwnve8B+95z3vw4z/+4/iN3/gNRCLHykeiCDY2NvAd3/Ed+MxnPoNoNIoXvvCFeOlLX4per4dHHnkE7373u/Hud78b73rXu/COd7zjqG93b7xjQq/X806dOuUB8M6dO+cB8D796U/vel+r1fLOnDnjAfDe/va3e71ez/e6bdvevffe6/3P//k/D+vWlRA+//nPe5ZlefF43PvQhz606/WNjQ3v137t17zHHnvMfO0v/uIvvJ/4iZ/w7r33Xu/ChQveq171Kg+A97GPfezwblwZyaTtevHiRe8bv/Ebvb//+7/3XNc17+t0Ot4b3vAGD4B3++237+rHyuECwAubThzH8X76p3/aA+CdPHnS105//ud/7gHwFhYWvPvvv3/X9165csX7uZ/7Oa9cLh/ovSuTM6y9yd133+0B8N75znce3k0pu9irnTzP8/7oj/7IA+DdfffdQ9/zoQ99yAPg3XLLLR4A75nPfOaeP5vXffnLXz7hXSvXy7B2//SnP+2lUikPgPfe97536Pe//OUv9wB4f/RHf3SAd6mEsZ+1r0T76vHgs5/9rJdIJDzLsrx3vetdu9a4n/zkJ73bbrvNA+C97W1vO6K7VDxvvHmWjDPfSur1uvf0pz/dA+C95jWv8a5du7brPZ/73Oe8r//6rx/7mkfNsRGe/vIv/9ID4L3sZS/z3vWud3kAvLe+9a273vfRj37UA+DdeuutR3CXyri8/e1v9wB4P/ADP7Dva/zLf/kvVXiaMm5Eu5JWq+UtLCx4ALyPf/zjN+DulP0yauLtdrteLBbzAHgPPvig+fr3f//3ewC8n/3Znz2ku1RuFCo8zQY3Snh63ete5wHwfv/3f9976lOf6gHwPve5z411Xd3MHj6j2v1Nb3qTB8B7/etfP/T7VXg6Oq53jaR9dfZxXdd71rOe5QHwfuEXfmHo+x599FEvlUp5lmV5//AP/3CId6hIDlJ4estb3uIB8P7Fv/gX3mAwGPo+x3G8Bx54YKxrHjXHxpt3zz33AABe//rX4/Wvfz0A4P3vf7+JZSeFQgEAcPr06cO9QWUitJ2OJzeyXdPpNJ7+9KcDANbX16/7esrBkEgksLCwAAAYDAbm69rHFWX6qVaruO+++5BMJnHXXXfhB37gBwD4Uxsos8NznvMcAMDW1tYR34kSxvXMi9pXjwd//dd/jcceewxPetKTfGGSQZ71rGfhrW99KzzPw2/8xm8c4h0qh0G5XDapKH77t38b0Wh06HsjkQhe8pKXHNatXRfHQniq1Wr4y7/8SyQSCdx1112444478NKXvhTFYhEf+chHfO998pOfDAB4+OGH8clPfvIoblcZA7bTn//5n+sC6RhxI9vVdV2TOFNzAE0vV65cQalUQjwe9+UL4bPwnve8B7ZtH9XtKYoygj/90z9Ft9vFt3zLt2BhYcEc7P2P//E/fEKyMhs0Gg0AwJkzZ474TpQwrmeNpH31eHDfffcBAL77u78b8Xh85HspLn70ox+F67oHfm/K4fG///f/RqfTwfOf//xjlVvvWAhPf/Znf4ZOp4Nv/uZvxokTJwDADLhBpf+lL30pnv3sZ8NxHHz91389vuVbvgW/+Zu/iU984hNotVqHfu9KOD/wAz+AdDqNlZUVPO1pT8Mb3vAG/MEf/AEefPBBOI5z1Len7JMb2a7ve9/7sLW1hdOnT+OlL33pAd2xsl9s28anPvUp3HXXXQCAN7/5zVhcXDSv//AP/zAikQi++MUv4s4778Sb3/xmvPe978Wjjz4Kz/OO6K4VRZFwDcU11Vd+5Vfia77ma7C1tYWPfvSjR3lryj7gYWxYEmnl6LmeNZL21ePBQw89BAB40YtetOd7n/vc5yKRSKBWq2mV52PGl770JQDAC17wgqO9kRvMsRCegoMtANx1112Ix+P48Ic/7Cs7Go1Gcd999+GlL30pHMfBfffdh7e97W14+ctfjsXFRXzbt30bPv/5zx/676D4ufPOO/HhD38YT37yk9FoNPDf//t/x4/+6I/iBS94AU6dOoW3vOUt2NjYOOrbVCbkRrXrysoKfuInfgLAdgWYZDJ5wHeujIMswTw3N4ev+7qvw/nz5/Hbv/3b+K3f+i3fe1/2spfhnnvuwcmTJ1EoFPDud78b/+pf/Ss85znPwS233IL/8B/+w8iS0YqijMeoUuk/9EM/NPT7rly5gvvvvx8nTpzAq1/9avP1YQd7ynTiui4uXbqEN7/5zfjEJz6Bb//2b8f3fM/3HPVtKSHsd42kffX4UCqVAIwXbhmLxbC0tAQAKBaLB3pfyuEyyXMwS8y88LS8vIxPfOITWFxcxLd+67ear588eRKvfvWr0el08IEPfMD3PU95ylNw//334/7778dP//RP4+UvfzlyuRz6/T4+/OEP4yUveQn+9E//9LB/FSXAN3zDN+DixYv44Ac/iDe96U14wQtegFgshmq1it/7vd/D8573PJw/f/6ob1OZkOtt12azide97nUoFot47Wtfize96U2HePfKKO6++27z53u/93vxkpe8BM1mE+9617t2hT0DwPd93/fh2rVruOeee/BDP/RD+Cf/5J/Asizk83n8yq/8Cl70ohdpqK2iXCeyXwb/vOxlLxv6fffeey88z8Ndd92FRCJhvv693/u9iMVi+Iu/+AsTuqVMHxQXo9Eonva0p+Hd7343fvRHfxQf+tCHEIvFjvr2lCHsZ42kfVVRlJngaHObXz+//Mu/7AHw3vjGN+567QMf+MDYlRq63a73V3/1V96zn/1sD4C3uLjoNRqNA7hj5XqoVCre7/3e73lLS0sm0/8wtKrd7DBuu/Z6Pe+bv/mbPQDe137t13qtVuuQ71QJAyOqenzxi1/05ubmvFgs5j3++ON7Xmtzc9P7T//pP3npdHro2K4cLaPa2/O0qt20sFc7ed7oKjss4/ypT31q12uvec1rRlY+00pZRwfb/e677/buvvtu73u+53u8Zz7zmebre1Wr06p208deayTtq8eHl73sZR4A773vfe+e7+33+14ikfAAeBcvXjyEu1OCjDPPkkmq2v3sz/6sB8D7kR/5keu8w+li5o88aB/9+Mc/jq/92q/1vdbr9QAAn/jEJ3Dt2jV8xVd8xdDrJBIJvOY1r8ELX/hCPPWpT0W1WsUDDzyAV73qVQd388rELC4u4k1vehOe9KQn4du//dvxsY99DK1WC5lM5qhvTbkOxmlX13Vx991346//+q/xvOc9Dx/+8IeRTqeP8K6VcXj+85+PH/uxH8Ov//qv4/d+7/d2hdwFOXv2LH7mZ34GmUwGP/7jP24SbSqKcnh89rOfxYULFwAAP/3TP73r9dXVVQDba7A3vOENh3lrypj88R//se//v/Zrv4af+qmfwlvf+lZ8/dd//cg1sTJdjFojaV89XnzVV30V7r//fnz+85/3pZAJ48tf/jJ6vR4WFhZwxx13HNIdKofB8573PADAF7/4xaO9kRvMTAtPX/jCF/DYY48BAC5evIiLFy+Gvs/zPNx7770jy1KSc+fO4VnPeha+8IUvaLzsFPPKV74SAOA4DqrVqgpPx4RR7fqv//W/xvve9z48/elPx9/8zd/4ElUr0w0XRE888cTY38NnQcdhRTl8ZE6Y+++/f+j7Pv7xj2N1dRW33XbbYdyWch385E/+JP7u7/4OH/3oR/Ef/+N/NKW6ldkhbI2kffV48epXvxq/+7u/iz/7sz/Dr/3ar42sbPcnf/InAIBXvepViERmPnuOInjlK1+JVCqFBx98EI8//vixqWw300/pPffcAwD49//+38PzvNA/H//4x33v9faoluQ4jqkMcOuttx7czSsj2audKDImEgmcOnXqMG5JuQHst11/7ud+Dr/7u7+L22+/HX/7t3+rpaBnjMuXLwMAcrmc+dq4z4KOw4pyuAwGA7z//e8HsH2iPmx99YY3vAGu6+Lee+894jtWxuVXfuVXAGwLi9euXTviu1GCTLpG0r56/Pjmb/5mPPOZz8Ta2prpr2GcP38ev/M7vwPLsvC2t73tEO9QOQxOnDiBH/7hHwawffA+qqql53n49Kc/fVi3dl3MrPDkOA7e9773AdhOUDuMr/u6r8Ott96Kxx57DF/4whfw4Q9/GHfddRceeOCBXe9tNpt485vfjHK5jCc96Ul4yUtecmD3r4zmHe94B37yJ38Sly5d2vXa2toafuzHfgwA8G3f9m2+RIrKdLOfdv3N3/xN/NIv/RLOnTuHv/u7v8Ptt99+qPesXB8PPvggfv/3fx8AfNV23vjGN+IXf/EXsb6+vut7zp8/j3/37/4dAOC7vuu7DudGFUUBAHzkIx9BoVDAc5/7XDznOc8Z+j6uvXiwp0w/z3/+8/Ha174Wg8EAv/qrv3rUt6MEmHSNpH31+BGJRPCe97wHiUQC73znO/HLv/zLGAwGvvc88MAD+MZv/Ea02238xE/8BF784hcf0d0qB8mv/Mqv4Cu/8ivxd3/3d3jta1+LlZWVXe956KGH8KpXvQrvfve7j+AOJ2dmQ+0++tGPIp/P4+lPfzpe8IIXDH1fJBLB93zP9+A3fuM38N73vheveMUr8IEPfAAf+MAHcO7cOTz/+c/H0tISCoUCPv/5z6NSqSCbzeK9732vChpHiG3b+M//+T/j13/91/H0pz8dz372s5FKpbC6uorPfOYz6Pf7eNrTnubLF7OxsYHv+I7vMP9//PHHAQBvectbMD8/DwB4zWteg3e84x2H+rsoO0zarl/60peMAHHHHXfgl37pl0Kv+8Y3vnFXjjfl8JH5I3q9Hq5du4ZPf/rTcF0X3/qt34of/MEfNK+XSiX84R/+Id75znfiOc95Dp7+9KcjGo3i2rVr+NznPgfXdfE1X/M12l+nFMuyjvoWlAOCoTujDvWA7epbZ86cwZe//GV86UtfMjkplOnmF37hF/AXf/EX+MM//EO84x3vwLlz5476lpT/y6RrJO2rx5Ov/uqvxn333Ye77roLP/uzP4vf/M3fxEtf+lKk02k8/vjjeOihhwBsO2F+/dd//YjvVgEwUvx74xvfiDe+8Y3m//fdd9/I93/oQx/CLbfcgrm5Ofyf//N/8NrXvhZ/9Vd/hb/+67/Gi170IjzlKU9Br9fDo48+aipcDtsfTR2Hlsb8BvN93/d9Y1fN+dznPucB8M6cOeM1Gg3vvvvu8/7Nv/k33ld/9Vd7t9xyixeLxby5uTnvn/7Tf+q97W1v865evXrwv4AykkKh4L33ve/1Xv/613vPfe5zvZMnT3qxWMw7ceKE97KXvcz71V/9Vc+2bd/3XLlyxVQXGPZnnEoCysExabt+7GMf27NNodV3jpywNolEIt6JEye8V7ziFd5/+2//zXMcx/c9q6ur3n/9r//V+67v+i7v2c9+tre4uOjFYjHv9OnT3jd8wzd47373u71er3dEv5EyjHa77QHwcrnc0PdoVbvpgH1xFMEqO7VazUulUh4A7/Lly3v+jLe+9a0eAO9tb3tb6HW1UtbhM067v+51r/MAeD/5kz+56zWtand0TLJG0r56/CkWi97P//zPe89//vO9+fl5L5lMerfffrv3gz/4g94DDzxw1LeneOHr3+AfroXY1/b6c+XKFd/PcBzHe9/73ue99rWv9W699VYvkUh42WzWe/azn+29+c1v9j7/+c8f/i++TyzP2yOgWFEURVEUBcCjjz6K5zznOXj2s5+NRx555KhvR1EURVEURZkBZjbHk6IoiqIoh4fnefid3/kdAMArXvGKo70ZRVEURVEUZWZQx5OiKIqiKEMpFov48R//cTz88MN4+OGHMTc3hy996Uu48847j/rWFEVRFEVRlBlAHU+KoiiKogzFtm28733vw+rqKr7t274Nn/zkJ1V0UhRFURRFUcZGHU+KoiiKoiiKoiiKoijKgRAb9eL/86Xhr0W1kvKh4oyQB9/xvMmu9apfHf5aPDrZtZTro+8Mf+2jPzXZtSzrM0NfSyS0wx4mvd7wDut5/2zi6zn/898MfzGinfbQcId32Ohr/7/Jr/dXfzP8tYj22UPDHTHBfsu/nPhy6f/9t0NfS1jarodJb8TZavuV3zjRtb7yPd889LV4ZORyWrnB9N3B0Nee+Fd/PfH1/uD/sYe+plPs4TFiisUb35Gb+HqV7/q94S/GNOjn0Bi4Q19a+rM3T3y51b8/NfxFKzHx9ZR94vWGvnTbNxRDv77vmXKUEKLMLqOEEGV2GSWEKDPOqJWaMruMEkOUmWWUEKLMLqOEEGW20Sn2mDJCDFFmmBFiiHL0qNyrKIqiKIqiKIqiKIqiHAgqPCmKoiiKoiiKoiiKoigHggpPiqIoiqIoiqIoiqIoyoGgwpOiKIqiKIqiKIqiKIpyIOw7ubhWtTtcDiuZu1a1O1wOK5m7VrU7XA41mbuW3Dk8DjPLrFa1OzwOMZG7VrU7XA4rmbtWtTtcDjOZ+9hTLJ81y9r5N/+vjMWhJnLXqnaHx2EmcteqdofHPhK5j5wpo1a44BG1gLd/1cQ/S7kOfvmh4W0xKfFouOARjwL3/bvJr6fsn9f8v8PbYlISCStU8EgkLHS7X7OPu1P2SzL52aFtsS8i0fAVWSSK6Lf95v6uqUyM85f/dmg77IuIFS56RCzg1a/a3zWVyflfHx3eDvsgYVmhgkfCslD7+n+xr2sq+2PhY383tC0mJR6JhQoe8UgMj77+w/u6P2V/PPuebx3aFvthxBSLH357bs/v73Q6KJfLiEajOHv2LHq9HorFIiKRCM6ePQtLxaex+MNftm/oFItYJFz0iEWw9D9+bJ8XVSal8r3/ZWg77AsrES56WAnc9sr1/V1TmZjV//2koe0wDJV7FUVRFEVRFEVR9kG32wUAJJNJAEAikUAkEoHruuj3+0d5a4qiKFODCk+KoiiKoiiKoij7gOIShSf5b4pSiqIoNzsqPCmKoiiKoiiKouwDCk/xeNx8LZHYDjfp9SbPg6IoinIc0WyIiqIoiqIoiqIoEzIYDOB5nsnjVKvVkEwmVXhSFEUJoI4nRVEURVEURVGUCZFup2q1Ctu2USqVMBgMYFkWPM/TPE+KoihQx5OiKIqiKIqiKMrESFGpUqlgdXUV2WwWkUgEiUQC3W4XvV7PF4anzB6u66LX6yGVSh31rSjKzKKOJ0VRFEVRFEVRlAkZDAYAgHa7jUKhAM/zYNs2Wq2WCb/TcLvZp1wuo1wuo91uH/WtKMrMosKToiiKoiiKoijKhNDx1O120e12kUgkYFkWWq0WXNf1vUeZTehaA4Bms3nEd6Mos4uG2imKoiiKoiiKokyA67pwHAfAtjgxGAyQyWSM8OR5HoBtV5TruohE9Lx/Ful0Otja2kKv18O5c+d8yeQVRRkfHQEVRVEURVEURVEmgGF2wLY44bou0uk0YrEYer0eer0eotEoAHU9zTKVSgX5fB6VSgUrKytGbFQUZTJUeFIURVEURVEURZkACk+O46Df78N1XXQ6HbRaLfT7fXS7XRWejgGFQsH8u9lsap4nRdknKjwpiqIoiqIoiqJMgBSeXNdFt9tFPB5HJBJBr9dDv9/3hdsps0e320Wn04FlWUgmkyZ5vKIok6PCk6IoiqIoiqIoygQw5Krf76PT6SAWiyEej5tQOyk2qfA0m3Q6HTiOg0QigWQyCUATjB83er2eEYiVg0WFJ0VRFEVRFEVRlAmgmOR5nnE7ZTIZRKNRuK6Lfr9vklCr8DSbSOEpl8sBUOHpONFsNlEsFlGv14/6Vm4KVHhSFEVRFEVRFEWZABlq1+v1EI/HkUwmEYlEYFkW2u22cVLICnjK7EDhKZlMYnFxEQDQarWO9qaUG0atVgOwLUCp6+ngUeFJURRFURRFURRlTBzHMRtVCk+NRgNXrlxBsVgEAFPZLhaLAVDX0yxC8TCVShnHU6fTOeK7Um4Eruv6/t/tdo/oTm4eVHhSFEVRFEVRFEUZE4pIkUgErutiMBig0WiY/E7tdtsIT5FIxPc9yuxAMSKRSCCTyQCAL2m8MrsEK01qCOXBo8KToiiKoiiKoijKmMiwuU6ng06nA8/zsLGxgXw+j1KphMFgANd1Nc/TjOK6Lnq9HgAglUohHo/Dsix4nme+rswuxWIR+XzeiIvdbneXC0q5sajwpCiKoiiKMmW0Wi2Uy2XNC6MoUwhFJMuyjLOpWq2iVCqh0WigVquh2+3CcRwjPAUdFsp0QyebZVlIJBKIRCJIJBIAtkPwlNnF8zzYtg3HcVAoFIyDTfvowaLCk6IoiqIoyhTBTWyn00GpVNKwDkWZMqQgPBgMYNs2bNtGJpNBIpGAbduoVqs+4UkdT7OF4zgYDAaIRqMmT1cymQSgeZ5mncFgAMdxUK/X0ev1TJJxdbIdLCo8KYqiKIqiTBG2bZt/DwYDPV1XlCmDIpLneeh2u2g2m3BdF7FYDM1mE41GA5VKBb1ezwhPrutqKM8MwVxOkUgE8XgcwI7wpImoZxsKT/1+H9FoVB1Ph4QKT4qiKIqiKFOC67rmNJ3JbDXpqaJMF3Q8ua6LRqMBx3HQarXgui6SySSazSaKxSJ6vR4cx0E0GgWgrqdZguJENBo17UcBSh1Ps02/3zfupkgkAsuyTHsrB4cKT4qiKIqiKFOCPElPpVIAthfJuiBWlOnA8zyfc6ler5vExJcvX8bq6iq2trZQKBTQbDbhOI4RLNRRMTvQ8RSLxUxlQuZ40pCs2cZxHBNiR7eizrMHjwpPiqIoiqIoU0K320W73Uaj0UC5XEa9XsdgMNATdkWZEuhaikQi6PV6sG0b3W4XvV7PVLfr9/uo1WooFovo9/smR5A6nmYHx3Hgum6o40nbcbYZDAbodrsYDAa4cuUKzp8/j36/D9d1NafiAaLCk6IoiqIoypTAfDGxWAyNRgObm5tYX19X4UlRpgS6IqLRKJrNJvr9PrrdLjzPg+d5WFxcRDweR7PZRD6fN5XRABUsZonBYADXdU0oFrAjPKnjabbhYU6r1UKn00GlUkG1WgUAdT0dILGjvgFFURRFURRlO19Mu91GvV6H4zjY3NxEuVxGv9/HYDDAi1/8YuOcUGabwWCASCRiQniU2YHiEROJdzod9Pt9pNNpzM/PI51OI5vNolqtolKpoNvtqvA0g8h2DobaacjkbNPr9dDtdtFqtVCv1zE3N2fC3LUAwMGhqxdFURRFUZQpoN/vm41sLpfDxsYGrly5gnQ6jaWlJdTrdZw4ceKob1O5TsrlMjY3N5FMJnH77bcbF4UyG9AREYlE0G630W63TXid4zjIZrPIZDIolUpot9uwbdsIFwzfUsFx+hkMBvA8D9Fo1LQXq9qpgDjbDAYD2LaNjY0NuK4Lx3HQaDQAqOPpIFHhSVEURVEUZQro9XqoVquIxWJotVoAthMZl0ol1Ot1FItFFZ5mnGazifvvvx/9fh/ZbBaWZeHOO+886ttSJoAbU8/z0Ol00Ol0MBgM0O/3kclkkMlkkE6nYVkWGo2GqXoXjUbhOA4Gg4FxzijTC8PpotGocayx3ShK8evK7OC6LgaDAba2ttBqtRCJROC6Lmq1GjzPU+HpAFG5XVEURVEUZQro9XpoNpsAYBISM7SuWCyi2Wxq4tMZZjAY4MKFCygWiyiXy8b5pPliZgu6XeheotOJwpLrushkMrAsC/V63VS20wTjs4OsXChFwng8DsuyjHihzB6u68K2bVQqFSMgUiBmXi/lYFDhSVEURVEUZQqoVqvmFL3T6SCZTOLcuXOIx+NoNBpoNpu62Zlhms0mtra20G63kU6n0el00G63UalUjvrWlAmgI2IwGJhcMf1+H57noVAoYGNjA5FIxCQfZwJyFZ5mB8/zTDuxoh0Ak5dNvq7MFhSeWq0WXNdFOp1Gv9+HbdtGRFYOBhWeFEVRFEVRpoB6vQ5g+1SdIQBPfvKTkc1mTa4YTWo7m3ieh2q1inq9jkQigXg8jm63i1qtZtpdmX5kuXXHcdBut43o1Gq1UKlUUC6X0Ww2YVmWSWDc6XRMLi/tw9MP8/5YluUr6EBBEdDKdrOK67potVpotVqwLAvz8/MAgHa7rY6nA0aFJ0VRFEVRlCNmMBiYvE7RaBSdTgeWZWFxcRHpdBq9Xg/1et28R5kter2ecTitra3h6tWr6Pf7poy3bnZmA7ZTJBJBv99Hu902AkW5XEav1zP9NxKJwHEcU7adgoU6ZaYf13Xhui4sy/I5nizLMonGtR1nE8dxUK/XYds2gB0XW6vVQq/X07H4AFHhSVEURVEU5Yjp9/vodDomtwgXwbZtw3VdtNttFItFdDqdo75VZR/Q3VQul7GxsYFGo4GVlRU0Gg30+30VFGcEWdGOVSgZcletVlGtVlEul2FZFvr9vunLFJJ5Dc3VNt0wybR0OBGZYFyZPXgIQHdTLBYzwhP7rHIwaFU7RVEURVGUI4Y2/0gkYipkcXMai8VgWRYKhYI5pVVmi36/j0ajgfX1dTiOY9wy9XrdOGJyudxR36ayB7Ki3WAwQLfbNaXYXdc1yacHg4ERmFqtFtrttsnfRnE5KGgo0wMdTwB2tZOG2s02/X4f9Xod/X4f8Xgc6XQaruuafG2T5njq9XpGvFJGo5+QoiiKoijKEcM8P4lEArZto91uY319HVtbW+j3+0ilUmi1WiiVSkd8p8p+YKjk1tYWBoMBUqmUCflot9vqeJoRpPDkui46nQ76/T4GgwEsy0Iul8Pi4iIcx0Gv14NlWaY/s/IdoG6ZaWeU40mTxM82dJgOBgNEo1EsLi6a6pTtdhsAxnY9tVotFItFVKvVA7zj44MKT4qiKIoyoziOg263e9S3odwA6GSKxWJoNpvY2NhAoVDAysoKut2uCe0pFotHfKfKpLCfFgoFNJtNpFIpPOUpTzHOtlqtpsLTjMANKR1PdCr2ej1EIhGcOHECJ06cMPmBWKGSobQUMbRy1nTDJPLBHE/AjvCkbTib0KHY6/XgOA6SyaTJx8Z5eFzhiYKThsCPh4baKYqiKMoM0ul0UC6XAQC5XM5UZlFmEy54o9EoSqUSyuUyHMdBLpdDPp83C+NGo4HBYOCrtKRMN8wpUigUTG6Ra9euoVKpwHVd1Ot1dLtds9FVphfpeOr3+6b8eq/XQzabxe233475+XnTjq7rotvtmjCedDrtu44yncjk4sEQKo69Wp1wNmEhD4pOdD7JXHuT5nnScXs8dNWiKIqiKDOG53mo1Wrm/7ZtI5VKmaSnymzBsuyO48B1XayurqJer8PzPGxsbCCVSsGyLMzNzaHT6cC2bSwuLh71bStj0u/3Yds2KpUKut0uWq0WNjY2UK1W0el0UKvVjGsmmUwe9e0qI6Bg5LquqVjHJMWRSAS33norIpGIT0Rst9vG8TQ3N+e7jjKdMD8XK55J4vE4ABWeZpVer4dmswkAmJ+fRzQaRTweR7vdNgU+xkn+r0nIJ0dD7RRFURRlxuh0Oib/BE/QNen07ELnBMN3WJa93W6j2+0in8+jUCigXC6jWq2aRbMyG/AknS42bm4GgwFs20atVjP5gpTpRgpPvV7P13cTiQRuueUWLCwsIJFImEIBg8EAnU4H7XZbQ+1mBApP0Wh0qONJhYfZhPMqc7Ilk0nE43FTCID52/ZCK1NOjjqeFEVRFGXGoPCQzWaRSqXMQkpDdWYTVryKRqOwbRv1et2UYAe2F7iNRgPRaBTFYtEkQFVmA1ZRoostGo2aCoatVgvVatUIjQsLC0d9u8oQuCGl6M8QOobqxONxzM/P+9ynFBiZuFiTi88GsqJdcE5lG6rjaTbheol91nEcpFIpeJ6Hdrvtq2g4Cik8qQg1Hup4UhRFUZQZgiftAJDJZBCPxxGNRuF5niYan1HoVovH49ja2kK320W9XofjOGbDyjxB1WrV5PZSph+2IcPqWOkskUgYAcq2bbRaLe2/Uw43oxSe+v2+SVAciUSQTCaN+C8dT7L6HVHH03RDxxMTxEsoKqp4OJt0u10z1jLMncnk9ys8hf1f2Y0KT4qiKIoyQ9AFQ8EJAFKpFADoxnVGYULTaDSKfD6PZrOJwWBgck1wcVypVFCv15HP53WROyMw1IpVlOiQAWDC7prNJmzbVgfFlCMTi1Po7/f7xr3G1xzHMeMzN7F0R4VdT5k+2G6jHE8qPM0erusacclxHGQyGV/Vwm63a0SovVDhaXJUeFIURVGUGYLiEsUmACYhseaImU0oPFmWhUql4ktYHNy8Ms+TblpnAyaMr9frRnjqdruwbRvNZtMkG2dlO2V6YZ+zLAuu6xrRiSF4qVQK0WgUiUQCsVjMvE+6Knq9nuZ5mgHGSS4+rkChTA+O46DVaqHf7yMWiyGVSiEejyORSJg5dtwcT8H3aM6vvdEcT4qiKIoyQ/DUXFawSyaTsCwLjuNgMBiY5KfKbMAcT3TGNJtNIz7FYjFz6t7v91GpVFAsFtHtdrWdZwAmli6VSsbtVK1WTcLxXq+HVquljqcZQG4sPc8zfZQ5njKZDE6fPo12u21yxlB8YkGIXq+HWCwGx3FUeJpi2NZhoXZSVOThgDIb0GVKV+Lc3JxJLs7+yUOfvVDH0+So40lRFEVRZgRuVphDhMj/q+tptpB5JXga22g00Gq1UKvV0Ol0TNiOZVlot9vY3Nw0LilluhkMBmi1Wmi1Wqb/djodxGIxdLtdI0zV63Vf/jZl+pAV7dhWsvR6Op3G/Pw8FhYWkMlkfMnIGcIjHU8aqjW90M0UiUR2CU90QI2bC0iZHqS4xGIAkUjECE/9fl9D7Q4QFZ4URVEUZUbgppQnrhLN8zSbyBPWVquFdruNZrNpEooz8TTdE+1224TbKdPPYDBAu902ycO5UWVukX6/b0LvuClSphMpMjAshxXrotEoFhYWkEgkkMlkkMvlEIlEzCaWzigNtZsN2DZhwlM0GkUkEjFhtMrswMMduoktyzKHPSwUoI6ng0OFJ0VRFEWZERiKI91OhHmeeAqvzAZ0LsViMdTrdZNYXJ68tlotuK5rwimr1SpKpdIR37kyDo7jwLZtE5bleR76/T7W1tbQaDR8whSFCWU6Yd4f/qGLzfM8xGIxLCwsAID5dyQSMa6nXq9nREYVnqafcYSncXMBKdMDHabAdjvW63Wsra2ZIg+dTmdsJ1vwPbru2htNDqAoiqIoMwKFJyY3lTAXEMM6ZPJxZXppNpsAthfB1WoV9Xod/X4fjuMgGo36wnX471arhWKxeMR3ruwFHRFMJN7v99Hr9YzQxOTU8v8aKju9sD3pZGo2m6ZvWpaFpaUl896TJ08iFouZKncUk9vttgpPU44UlMLy6MlKdxouOVuw31I8zufz5gAAgCn+oKF2B4M6nhRFURRlRhglPAE7ricNt5sd6HiKRCImt5OslsW2lhucVquFra0tdcdMOczp1G63TZvKKnYMp+QpfLfb1QTjU4zruhgMBsYFw3a1LAuxWAyLi4vmvUtLS0agoPjU7/dNNS1AhadpRQpPYYnDLcsyeZ50DJ4tmHOP/wZ21k2sVNnpdFR4OiBUeFIURVGUGYCn7dzkhCHD7ZTZgCKh53loNpu+8B0AmJubM6ezFDJ6vR5KpRJqtdpR3rqyB3S6ML+T53lGXKIDhu3ZbrfRbrdVNJ5SKEbIKmasjsXiDtJlurCwgHg8bvotsD0uS0ebfE2ZHmRyaQpMQXggoO03W9DxBGyLiq7rIh6PG3ciq43KogHDUOFpclR4UhRFUZQZYFRiccLcT3TLKNNPu90GABOS1el00O/34XkeUqkUFhYWzKaXbeo4Dmq1GhqNxlHeurIHg8HA5HiiqNTtdo0AweTUdEV1Oh0VjacUOmAcxzH5fehYi8ViiMfjyGaz5v3ZbBbxeByWZZlwPObfYzJyXk+ZLjjeWpY1dK7l4Y/219mCefQ8zzOORCYVl6HswN5CkgpPk6PCk6IoiqLMAHuF2QH+pKcasjMb0NYvk1BzM2pZlhEoer2e2fwOBgM0Gg3Ytn2Ut67sAfOtsU3pgKLrSVY8YzVD7bfTSTCRMKvUMVwnkUggnU6b11OpFDKZDAD4yrTz3yo8TS9SeBrmeOLXNcfTbMFqlI7jIBaLIZlMwnVdJJNJWJZl5lZgfOGJ4uQ4wlOxWEShULhpRSoVnhRFURRlBhhV0U7C1zVkZ/ph6BVdL0wszk2u67om1E5ucvv9Pmzb1lC7KYfCE/N29Xo945CQG1aG2rGikm5mpw8KRNwwUhCWG1h5KJBMJpFKpRCJRExuJwoaWtluumE7RSKRPUPttK/OFszh5LouYrGYmX8ZWicdT3tVtguGY44jVLG6Zb1evwG/zeyhwpOiKIqizADjOJ4AmDwjWh1r+qGLiS4I27Z9ln+G8zC/F/9miI+sxqNMH3QyyeTiRG5SGHo3GAzguq6G70whwU0ok8KTRCJhcuwB2+N0KpUylUaZuJh/a4Lx6UUmFx8mPKlwOJuw33qeZxxO6XTa9/92uz1Rjqdh4ZjD3g/gpnW2qvCkKIqiKFPOOInFCYWn4EZXmT5kLgk6Y2RIXTQa9YVPdrtdX74Y5g5Spg+GT7ZaLZ+oNAyKU2xbZboICgx0MTHZeCKR8B0KxGIxzM/PIxqNmmeBbjYZaqdj9PRB0WFUqB3b72YVEGaVdrtt+hznVgrEsVjMuFT3IzxNkhNKQ+0URVEURZlKuLgdlVicRCIRc/KurqfphsJTJBIxIhKdTtyssnQ7N67SOWHbtqnQo0wXbEfmeKLgMAwKVOp4mk7Ynhx/ZYgOQ+1kGHQ8Hkc6nTbvp+jEPF/qmJlexsnxxLbeKxxLmS7Yby3LMmITc7NZlmXC4aTrbRiThtrJ66nwpCiKoijKVCKFp3HQcLvZgO0TjUbRbDbRarXMRpRCU6vVMu1OMYqhefV6XYWnKUWGVzWbTZNQfBgs483vUaYLtieFYOmcoNhPMQnY3sRmMhkTakfh0XEcdDodFZ6mGHU8HV/oGiaWZSGdTps5ljnYZBXZYVxPqJ0KT4qiKIqiTCXc4OyV34lQeGKZYGU6oePJsizUarVd7RWPxzE3N4dMJmMWqlKYqtVqKjxNKRQIe72ezx0zjE6ng0ajocnFpxSGuDLhdLPZNG3McB05PlN4isfjxj0hc3hJl4S6ZqaLcRxPbGudX2cLFnoAtg/yotEokskk0uk0IpEIXNdFs9kcK9SOaKjd+KjwpCiKoihTDjei4zqemHMEUNfTNMNcEgBQr9dNqBUAk88rk8n4yrQz3I45nmzb1o3rFEJRgnm79hKTWG2JuYOU6YL9LhKJIBqNGnciw3MSiYTP8QQAc3NzZsxmmB3dT8wNBah4MW1MklxcReLZotPpmH5rWZYJiWU+RTpO9xNqtxcqPKnwpCiKoihTzyjhyXEctNttVKtV45gAYPI8dbvdw7tRZSIoNEUiEVOpTi5mU6kU7rjjDuRyObO4Zfv2ej30ej20221t4ymEoVlsp702qI7joNls7pkLSjkapPBkWZZxPHHDmkwmd43PuVzO5OWTTjaKUCpeTCfjhNrJ8GcV/mcHFu+IRCKIxWI+4Ylt2u12TXXZUWhy8ckZ7+hUURRFUZQjQS6Agifq3W4XhUIBxWIRyWQSCwsLaLVaOH36NFKpFBqNhnHVjJuHQDkcPM8z7pZYLAbbtncJDrlcDrfccgsymYxpP4ZsMSyP1fCkK0o5enhyzhP2vTanzC3CROTK9EBxQYba2bZtnBMUiYPCE3M8ATtV8KTrSR1P0wlFRlY9CyMajRq3280qIswazJnI/sb+RwEqmUyaw4JJcjztx/F0s6KOJ0VRFEWZYqTbSYpHnuehWq2iXq/7EmI6jgPbthGPxxGJRIxIoUwXTBBOYVEuiIHtxez8/DxOnjyJeDzuq47F9vY8D7ZtazjlFML27Xa7Y4faybA83aRMD2wLOiUikQharZYR9BnaHNyAptNpJBIJU5WSAiRF56CLUZkOZAXDvULtxnHGKNOBTPBP56Jt2yiVSqat6UxkOOwwZJvvx/E0zvuPIyo8KYqi3ER0Oh1Uq9WbcsKbVYaF2XU6HfOn2+36Qj0oRNAF0263D/GOlXGgcET3g23bPnEiGo3i7NmzOHHiBFKplC8ZMZNWA0Cz2VThaQqhG41ttZfw5Hkeut2uEZDV9TQ9cAMqBSjpJGWumKAjNZlMIpFIGMeULNPe6/XM+1V4mi7GEZ4oQPIgQJl+XNdFp9PxFeqwbRuNRgPNZtO42OgmPsjk4uO8/ziiwpOiKMpNRLlcRqvVQrVaPepbUcZkmPDU7XaN6JDNZtFut1Gr1XwndhSeVJiYPigcWZaFfr+PZrPp28DEYjGcOHHCbFDlBohuGs/zTI4n3fxMF9zkMHxunLxNrVbLbGRVeJoewkLhKOazb6ZSqV3hzKlUypd0XG5ox3E8dTqdXVUrXddFoVBAo9G47t9LCUcmFh8Wok6RQh1Ps4MUf4HttVWn00GxWEShUDAOcelMHIZ8bb+hdjfjc6PCk6Ioyk2CnOTUATM7cAMqS3UD25uSSqViQrLi8bgvXKvb7ZrwDy64lOmBYqBlWeh0OkZ0INFoFPPz8+j1eruEQ4oT/X4f7XYb/X5f23eK4KaFjsR+vz+WMMjk4hQmlOkg6Hhi2zIXjGVZSKVSu76PwhOvwfAd/psb1jBhy/M8lMtl1Go1X99mOfhGo6Hi5AHB/jtKeOJr6niaHZjjiW3L0FnP80wYHv89bqhdMP3BKFR4UuFJURTlpiG4uNXF0mzAzYUM42CZ9na7jVQqhTNnziCbzZoNEbAjbLC6nYqN0wUr0VmWhUajgXa77eujiUQCi4uLmJubQyaT8TneKGRQcOr1eipUTBF0QfR6vdCk8cOQYsYsiwqO46Berx+bpNlB94NMAB+Px5FIJMw4K2H4M8u00/HEje0ox5MUm+XnKL9u2/b1/3LKLiYRnuiQUaYf9j1ZiZAHOxSh6CamQDWMsBxPexHs56Ouz/XdcUOFJ0VRlJuE4EZGhafZIFiBBYA58bYsC5lMBul0GktLSwB2BCZayjOZDADsctQoRwvD4yKRCNrttln8ElYpPHnyJNLp9K6TVYoTTGCt4ZTTg0wkHRQUR8FcUNMmPE16Mm/bNmzbRj6fPxan+nS1UCiii01WG6WzSRKPx325n/g9QcdT2LhMYRrYmbuDhSLa7fax+HynjXGEJxn+rMLTbCAr1tHx1O/3TcgkC7gw3944wtNBOJ56vR6q1SoqlcquUNtZR4UnRVGG4roums2mLmyOCcGNjC6Wph+2ESsnkX6/j3q9jlgshoWFBViWhfn5eWP956ler9fzJbit1+tH9asoAeQpa7PZ9OWeAIBsNov5+XmcO3duV+JiGWrnOA46nc6xPB2dVWQ41bj5nYBtsYFiwrQ42Mrl8sQCkhRN5L9nFSk8sb8OBgOTfDoaje7KwQfsuKGC1bKCOWQ8z9v1+UoxinN3cD7QiqUHg0wuPkx4konHp0kkVobDgwD2rX6/j1gshlgsBsdxTFsPBoOx8yaOekaCjCs8tVot8+/jdqCkwpOiKENhfoFyuXzUt6LcADTUbvYIC7MDYIQGCk98D5OJc9PKTd/8/DyAnfwgytHDsJtYLBbaLgyzi8ViWFpa2pXjSyZK7Xa76Pf7ugGaEuh4YgjkuH2u1+uZPG3T0JYM3Z0kR1ww9Og4jDdB4anT6fh+RwpMQaTwJK/Df1PcAHbPz/L/fBZkoQmOB9PwnBw3xkkuLg+D9BBvNmClUQBGuGVfkgnCKVCN63i60VXtpNh0HMZPiQpPiqKEwlwTwPbmVU/VZp+g0HRQwpNt28fulOaoCAuzA4BqtQrP85BOp325Rebm5gDsLFbYbxOJhBGl1PV09NCpwLCbYKJgy7Jw5swZZDIZrK+vIxqN+p4Bbu4ZNtDtdjEYDHScnhKY44kn5+OKA/1+34ga07CZ3c+mh27L67nGtCGFp2g0Ctu2Tfvwa0FhGNgWnpjnidegM5FtzH49an7mz5LCEx1WKjzdeMZxPAHwhVAq0w+FJ1ksIBqNIpVK+fqvzJU5TBy6EaF2YQST1buuOxVzwY1ChSdFUUIJCgc3Ukg4ToPoLMHJbNgJ642AIWDqkrsxhAlPnueZpLKLi4u+hU82mwXgF57Y7nQ9dbvdYxH+MsvQ0cK2sW3bt9iMRCI4efKkSUq8sLDgC+WReYCk8KTtOh1ws0AxcNyxdjAYmJxQ0yAoyA31uKF2wd/1OGzKZc4f5mRjNTtgR2AKEolEkEqljLuCYrEs2T4sz1Nw8wn45wMVng4GmXh6lOMJgDqeZgzOlQBM/6HwxHQEpFarme8JI8zxNAzP81AsFs01g9eQSJc7xbDjMIYSFZ4URQmFQhMTE9+IDQ3LA+fz+V0DsHLwcALlZHYQjid5Tc0Ndv3IE275tWazCcuykMvlfO8PCk/AjuspGo2a1yuVii6WjxApGjmOs0t4ikajWFxcNBufubm5XeXaZXUs5npSx9N0wPZlqF2YOBDmkGE1pWkRnuQ9TCo8MfSM7q9ZJhhqJws18GthOZ6A7SIBMoyHfZV/whJUB6vo8WvqeDp49iM8aRvMBgx7pojsui5isZgRh9nHZe60vRxPe30NgKk8y9xNo0LzjnsfV+FJUZRdcEMkN7aygst+YeUmACaZrnJ4cDHFyewghCf5jKiwcf0Mq2jX6XQQi8V2CU8y1wi/V4rG8/PziMfjcF1XQ+6OEDrR2EayPDuw3d5MGp9Op3Hu3DlfrhgAvkTFzPE0LSFaNztSeBqWpHbYpoPC0zS0434OEuQ8ww3WrOcTZF+Vjie2j+u6JpwujEwmY/qt3NCy74Y5nqQ7WX6G/LoMvZ2G5+Q4IYWnYIh7kOPoSDnOyLBntm0ikTBup36/b9yJnU4nNOl/kHEcTzK0T+Z1C7s2n6V4PK7Ck6IoNwdcGHHgu1GhWbJSA3A8qt3MEsHFlApP00+Y8MSNKU/qgtDVxMWK7GeWZWFxcRHAthB8nBY0swTz4FiWZSqZybZIpVLI5XJwXReZTAYnT57cJTLSFUPhKRKJqOtpSmAy7n6/7wt3lUgRkXieh2azaVxS44g9wWTeNxL583u9Hmzb3vOe5DxzHMrNc7Mow+KCbRqNRkOTiwPb4zHdFaxEyesNy/EU9hnKdmZeqYMMm79ZCTqeRiHbRpl+5AEPk8MnEgk4jmMO9NhXeWAwTqidbdtoNBpD+2FQwB/13Mi+r8KToig3BTIhMYAbMvjJqjjcQOkG6fCQJzdsz4NYLIUlRFX2h9xoyNN0OpW4oeF7+/0+XNc1ScRlQtpgBSYKVswVpRwuzPNCB0RwQ59Op5FKpTAYDJBOp3HmzBmk0+ldiUzpepJ5Y1TQP3pc1zUFOiZJLg7ACFbjCkqFQgH5fB7VavU67nhvyuUy6vW6zylZqVSQz+dDx32KI8BsO56kW8GyLF+lP2Anj9Mwx1M6nUYsFvM5m9j3B4PBSMcTHVYATE4oYOcg4jgIe9MGhSfLsvYUnjS5+GzBiAu2LccohrXRvUTH6ijHE7/e6/XQaDTQbDZ3Ha4T9k/5bMlrhL1Xhu8eJ+EpfJRUFOWmhoMcbcSxWOy6S3VzYo7FYkin07BtWyfrQ4QL1kajgUKhgEgkgrNnz97wn6OOpxsHP7/gArjZbALYcTbVajWsra3B8zzMzc0ZYbfT6WBhYQH9fh/tdtvnmJmbm0On00Gr1UIulxu6aVIOBm5cGbYTFAfT6bRxPMXjcWSzWczNzRlXE7AjKDLETiYvVo4OjrWsBjtsHBwWntFsNs1JO52Nw2g0GlhdXUUikUC1Wt1V5fJ6CVanS6VSaDabvnGFr/HnStHkOISDBUUzz/OMG4JjswyLCZJOp32fAze03NwOy/EEbD8j9XodlUrFF0LN74nFYlMTlnlcoNggRb9hcI2sn/9s0Ol0du07LMsyB3EUl2XBjr2EJx72VCoVxGIxXygdkcJT2Oth75XhtLLK4qyjjidFUXbByjrB6g/XIzzxWolEwpdjaJZPQmcJfs5bW1vodDool8sHskENO7VV9kdYmB2wIzzNzc2hVqvhypUr6HQ66Ha7KBaLqNfriEQiGAwGZrPCDSKRrqdhTomwBLfKjYGhOvF43FQZlP0lm82avDHxeBy5XA7ZbNa38KToFKxsFxSxlMOF7cgqg8McaMMOXjqdjhESR825nuehVCrBcRysra2h0+mgWCxe/y8Q+BnDvi7HFIpkhULBFA45LqF2w4Qn+Vo8Hh+aDyibzRo3BR2OUngKy4PFtt/a2sLGxgbK5TK2trZQLBZRLpfNz49Go2g0Gsjn8zP9GU8T0pWy10Zfk4vPFt1ud5ejiNXjOF5xzKKDfNQY6DgOSqUSlpeXMRgM0Gg0Qt8bFJVHOZ6CYbbHJU8e0SNORVF8cGFUq9VMomIKRZMubFzXNfloZN4oxlbz9G9YbgTCzVRYPhtlPGRYTjKZxGAwMLbjG/1zyHGZKI+KsDA7ueFLpVLY3NyE67qYn5/H3Nwc1tfXUavVfOEhwM4iSp7gLiwsGFdGsVg0Qken0/FtKpPJJHK53A11UtzsSMcEw7Fk31laWjLtwb+ZbJzIkuyO45j8FMC2sMWQS+Vwkbl8GDY37H1hUFCUVczC4LXZV7vdLprNJgaDwQ1zMMpnMvjv4CED3QTcfB1XxxNFXn4e0WgUyWQytEohsD1OcwPJNqVLadhBjeu6KBaLsG3btK9t2xgMBpifn0e73UYymTRt7nkeGo2Gyd+n7J9JcjzJQ9Tj4kg5zvR6PSP2ch/COZYJxoGd1AXBPiphn6tWq8bZOuw5GJZcPIgUuvjs0eXsuu6eye5nAXU8KYriw3EctNtttNttFAoFrK2t7etUx/M8bG1t4fLly1hfX8fW1haAHWvyJAvScrmMcrms+WiuA+bYovhwUMLTfqogKeEEq68AO5tNLpy63S6SySRuvfVWnDlzBtls1ogQwPZmlH0u6LyIRqNmo8I8BZVKZZc7qtvtolQqDT3NUyaHfdGyrFD7/8LCgjmRpfC0uLjoexYsy/KF7bRaLZ/wpBwNFALZD4cJT8M2HxSD9xKeZH6vRqOxyw1zIxh2kBAUnrhR4/v6/b7PPTDLhxAUEvm7yJxqHIflAV0Q9l8KT3w2gvljgonc+X8+A41Gw4wZ/Br7OddtOudeP5PkeJL5MvWzn34oPAE71eik8MSvSfF/VLvK12XhgCBS0BqVXFwKnpwfjoNrVKKOJ0VRfDDMbmNjA/Pz8+j3+7jtttsATDbw9Xo9X+4SLkw5UcdisZH5L4hMzFqv13dVdlLGgwlRpX1cVta6UczyBmPaCAu14+l2Mpk0FVroRrIsCydPnoRt2+h0Okgmk2i1Wjh58iT6/T663e4uF0w6nUY8HjcbZFZZYt4nx3HQbDbRbDbRaDRgWZb2wRsAF7Xys5csLS2Z3DHxeByRSATZbNb3LEj3BLBd7ZCvh4kPbEu2uXIwyPxMo4Qnma9Lwr66V6gdhSf+DP6cbrdr8r9dL6McrMHX+Ezz3uTGfZY35VJ4ikQivs+av6MMKwwiy7WTsMTF0g3BtZF0XLTbbbN+4vMRzB0zGAy0b18nkwhPFAjYTnu9XzlagkUB2HelY5Fr5HFD7TgWsP+NEp7472FrbhkGSI6DeC9R4UlRFB+DwcBYR6vVKgaDAer1Omq1GtLptK/87yh6vR5arZZJuJfJZHxJMcd1UQU3UDcyjOBmgqEQ3W7XTHqcWG+kfXfYCa4yOWGhdnT9JRIJtNttIwSxXy0uLmJ9fR2xWAzNZhOZTMaEsg5zQsRisaFiEkO8YrEYarUaGo2GL1muMjlygWpZFhqNxq5xcG5uDsBOTjzLsjA3N+d7FrjZZz9utVqIxWJGkJIbIc/zUCgU0O12USgUcMcdd+gm6YCQoXaj8m1R2A3CED2KV8Not9uoVCqmDDjH93K5jBMnTtyQ30We1Ae/HiwkITddjuP4Nu6zvGliO3Cj2mg0zGaTXxs1JiaTSUSjUeNU4h8+J7JaHufjXq+Hcrlsvsa8Uul02qzPOGbLz7nf76vwdJ1IAXCcqnZ0sul6Z/ph/jwpFEciESMOs805R/PQPAz2TY7RfAbC9ihyvByV4yksxPM4VAaV6O5NURQf7XYbV69exWOPPYZkMomv+IqvwPLysnFYnD59eqzTVOaJooOKYUFk3FC74Ias1+up8LQPXNdFPp83p+NcBN9o4UlD7W4cwxxPwHbIKjcZMvdSNBrF/Pw8Go0G6vW6rzIeN4f76T/ZbBbtdhu9Xg/NZhPz8/PX86vd1LAduFClc41Eo1GcOHHCVLVhpRwKgBJa+4PhP8D2WJlKpUzenU6ng0qlAs/zUCwWcebMmUP9vW8W2K6sdjRpVTtZDW/YwYzrurhw4QL+5m/+Bs1mE6dOncKJEyfQbDZRqVRu2O8SDBGRP1+O9TLkk++n+MT3zyrSzcLQWJnPBYBxJYYhXYvAjpDFz4sbUf4/Eokgn8+bJO0sMEBxMZlMmj7Manqa5PrGsV/Hk653phuKt+y3FJgSiQRSqRRisZg55JFFOoa1K9NX1Ot1356I827Yz+ffw8b+YH4n+e9ZHkMletylKIqPdruNxx57DMvLy7h27RquXLmCYrFoBulWqzXWdfr9PprNptk4XblyBRsbG2bjPK6Kz4UUT/GGhS0oo+HmljbiSCSy54l6GHstrnTxdWOQYRRSeGLuJubpYm4CyeLioqmWxpwGe7mexoEn7OOOAUo4UnRyXRfNZtM3DsbjcVMJS1bayeVyvmchuHllFTUZjsNKY1evXsUXvvAFFItFOI6DYrGoOWEOCI6rDIMbNscNE4AZajdsfPY8D5ubm3j00UdRLpdRKBSQz+dNvh86ZW4kwZxO/BrhPC3DzqTDeZY3TUFXEjel3LxSGBomUiSTSRMKzXFdVrYLOhPr9Tqq1Sps24bneUbsZ9EHjuWtVsuXIFnm2VL2T1iC52FIx9MsP+M3A7IoAPtNMNRO5qWTrsQwHMdBrVZDuVzG8vKyWVuFib/DQu2GOZ6kMHXccjyp8KQoio9isYjl5WWsrq5idXUV165dQ6FQMIvkcTedrVbL5DBpNpumzDJPY8cZTGWOC+am0RO9/cGQHJmTguEgo6jX69jc3IRt2+j1etjc3ES1Wh36fg21uzHIxY5c/LL/JRIJ43gKhlYwPxM3LTwlB65PeEomk0awvJEJjG82uKAFtvulbdu+fphIJJDNZk0IALC9EKXjSS5KKXBwXOx0Or48T9zgbmxsmATx+XweV65cwfLyMgqFgm6YbjAy9xZD5sIYFhLV6/V8OX6CtNttrK2tIZ/Pm6pnxWLROIyl0/F6oXAWJjoFHU9Ebsbl2DWr84EUhzimBsdnVusNg8IUsPO50akYzA1EFwVzW9q2Ddu20e12UavV4DiOWYsxlJMb5mHPizIZ+3E8hQmzxHEcIyIqR4d0oFJgikQiRnSiECX76CjHU7lcxuXLl80cyuIrwTV1MFx5lOMpLNTuOIj3Eo1XURTFx+rqKtbW1rC2tmbs3M997nORy+XQarV8JwbD4AAPbG9WV1ZWUCgUcObMGZMfYRzHkwwT4sJNF1b7g4tULpKAnQ3SKJjMul6vGyGwXC4jEonsGW6lC639E+Z2Yp4uhkdSeAo6J6LRKNLpNBKJBFqtFlqtFhYWFgBgaP/tdDqo1WqwLAtLS0uhm2LLspBOp83puwzxU8ZHVr7hJjPoeEqlUrvadn5+ftdnLsOxGLbHZ2MwGKDVamF9fR0bGxs+QcPzPNRqNeRyOVQqFeNmY54LZf/I5OLdbneouM/PPggFKykoShjGztDXarWKZDKJcrmMRCJhcj1db0g6c0jFYjHMz8+HJsImnNNl8QqG2gXzF80aQeGJYzB//2g0OlJ4Yj8OikvAjsgRDMPr9/uo1WpGOL7jjjvM4RGFLgrWvL4KTzeG/QhPo9ZSjUYDrVYLtVrNCBypVOqGFQBQxkMemFH0pWMxGo0ikUiY8SmYuD/IYDDAP/7jP+KJJ55Ap9Mx66tRztCwfHlhufOAcOHpuKynVXhSFMXgui6uXr2KYrFoQuLa7TYuXryIRCJhTtX2qpzChbNlWajVarh48SKq1Spuu+02VCqVXd8/rBqITK7MRbQurPYH3Q/tdtvkeYrH4yM/z2CpWNd1US6XMRgM0Gg0kEqldoV5qePpxhAmPMkTOOb/CX7+JJvNmrxs3W7XnOZx0yMFDNd1Te4fAKhUKjh9+nToRiqZTKLZbKrj6TqgGyYSiaDb7e7KA0TRkBtakslkkEqlfOIxx1rCsL1kMolut4tisWg2Pnx++Ax1Oh1Uq1WzyVpaWkImk8HS0tLhfRjHEPYxCsXDxsGFhQWsrKzs+jqThQ8Ltev1emg0Guh2u7Bt23cQ4Hkezp07Z0Ky6G7dDyxkEFaBLbi5kv+PRqO+amzHQXhiWB0AI95y3RKLxcxnHQZfJwyJ40GOXP+wf7I4Cz83CtS1Ws3kpeF95HI5I1ImEomh6yllPPisy7CrYUj3+LBDVIbH5/N5LC0toV6v4/Tp00in09pOh0jw4I7tS8egzJcWzJsYZGNjAw8//DCq1SpisZg5XBh2WCCR4nzYPfI9RB1PiqIcWxzHwZUrV1AqlUxCcMuysLy8jH6/76uYNI7wVKlUcO3aNVy8eBGO4+DatWt4xjOe4csHISvGhF0HgK8CRfCEUBmPTqeDXq9nNrS07I+aJOWmZzAYoFKpoFQqmZLSMncQUbHpxhAmPHEjwlNW5vZwHAflchn9fh9LS0tIp9PIZrNIJBKo1+sYDAbo9/tIpVLGtSiFJ3ldLri63W5ogky2d3DDpIwPF6dMYtput32vZ7NZE0I5THgiMmzHdV20220MBgPMz8+j2+2asZybZ8/zTKLxdruNO+64A4lEArlczhemp+wftkm32zWJqMM4efKkmQMlzA0lQzKJ53lot9toNBrY3NxEsVjE5uamGQ/a7Tae+tSnolKpmMOfEydO7MudKOeG4Lge/J1kGXCOI/Jrs171S4510jUB7ITSDdtM8oAgHo+bz5TCFf/mwRrbnIdEvHa73Uar1UImk0G73cb8/LwRqWKxmMnxxcrDOi7vHz67ct05DFkFbVg/pwMV2BGhgG2BWV3Dh4eMxAC22479SzqeZEEE6U4Gttus3W7j0qVLKJVKKJVKOHHiBDqdDubm5kJdhzzkkWlKJqlqdxwKNEh0ZFIUxTAYDLC2tmY2QjK0qlQq+U4CRsGThUuXLuHSpUvmlK7ZbKJYLJpJeK9wO7lw5cJafl0ZHyYS5omoDAcZBjfI7XYbjuOg0WiYMICwikvDbMPK5IyqaJdIJMyGIxaLoVarmT7FPANMTs1KLnKRKxe/AEx/n5ubM/b/YbnceMIPwOe0UcaH/YcCcFCcyGQy5iQ9KDxlMplQ4Yl9mSITkxk3m03U63UA289SqVTC+vo6SqUSisUizp8/j1Kp5MtdowmKrw8KBxTnw+a3RCKB06dPh248ubmR1c+C115fX8f6+jqKxaLZ1FQqFdRqNVy5cgWXLl0CADPv7gf5TI7jeJKhZww/Ao7Hib1MLs4wSP5esqpcGMwjQ2cM59CwHE90WdTrdXQ6Hdi2jU6ng5WVFdi27Quzlu5F/qGbUtk/Mpn8OMIT18XDPne5VpJjq86fh4sMceX8yvbjXMt/S8eTHLeKxSLq9TqWl5fNGF+v15HP51GpVHxOT+J5HqrVqklRMGpdfDOE2qnwpCiKodlsYn193UyOLBNr2zY2Nzd9jqdhuK6LjY0NLC8vY2trC9euXTODbrlcRrFYNBb+vRKMBzffKjztDy50mfOlWCya0Kq9hKdarWYqd/C0qNFoYGNjY89wq+MyUR4FXLyEVbSjy4l5Q6SQxMVSIpEwVn4mhucmV25OpNCQTqeRyWQAYFfeIcmNSFR+M0OhyLIsXwUzcuLECbPpkXl64vG4ycVEuJhmmzKHFws7cPwGtsf3tbU1rK6uolAoGLcMDwYoaOmGaP+wHdkmwz7LWCyGEydOhLoKAX9Sb/lsOI6DlZUVU/SjXC6b8OlKpYJKpYJGo4FCoWDG3/0KiTLHIpGh14BfVOIzxGc3+P2zLDxJh4LsYwB8RQCGwTGTghzHgKDju9/vo1wuo1KpoN1uo9/vo1qtGpcbBWtZGZNtwvFE10fXhwx3msTxNOz5ln2YYdUMt1QODx7MeJ5n5lUKTTLUjrCNZLvSMby6umoKALBf2rZt3OUSuU4KhtINczzJMVe+9zisqVV4UhTFwFAqDn48Uet0Osjn877QuGEwpIslnmu1mgkb6Pf72NzcNG6KvU5Cg5vv41ZW9LDgiRvt+8z5MqpiB7AjSkSjUVSrVRSLRZTLZbRaLbTbbdRqNd/7j8OkOC0MC7UDYEI2eIIObG9kuYlliE0ulzPhN51Ox7dBoljFRRHzHNBFxQ1WGLyGChT7g3kjZI4nCXMsMRSAxONxzM3N7doMMQcPxSf+oaOq1WohEomg0WigVquhWq2iXC6jWq0in88bl5wsF6/sDzl38kQ8jHg8jnPnzhmhNwjFyOB8S2GCeRg53/Z6Pdi2jVKpZIRFtmvYKfw4SEFjWKidPI2Xp/VhjqfjMD8EN6MsfDIq9QAApFIp46TgH9m+/Gx4OMSDIgqQ/D9FKvnZykTlKjxdPzKn116FFqTwFDZusp1kTj5+fZaF2FmEhzwAfE4nCk8Mh5XFEdj/gJ22LJVKJt9as9k04zAQfmDH1/Y66JU/I8zxxGvMOio8KYpiWF9fR6PRMAIFFzGdTgcbGxs+q/gweNLLE7tGo4Fms2kEqGq1auymewlPwcXtOJXwlN3QpSYrD40KAyEyuXun0zETKDdUwZCtgwi14/N0sxF89oEdkYj9UOboSiaTuwShTCZjkkzzlJ7iFK/F98qQH76H7WvbNgqFgnHO8L3B/AfKeMiNa5g4sbi4aBa/ckMbiUSwsLAQGmrH54D9XFawZHgQ+7DjOKjX6+YEuFAomBx+4yRHVYYjXUoUhMJIJBJYXFzc5WAjLAYR3Kx0u100Gg00Gg0jKJNer4dms4lCoYDLly+jXC6b7x0mgDUaDdOvJbJfS6Ej6Hiiw0mG2jHPU/D0fpbnbdnnOJZSPOKGdRSpVMo3llMsDua+YuU6hvLxfRxr+dnycIH5FnmP+xUZlR0mFZ5GrUvZ/4J/77X2Um48TMYP7IQD88AtmGSc7S4rWHJc7/f7aLVaJhdmq9UyIbHNZnNo/jspTg5zPIWF2sn3H4dnRoUnRVEMxWLR5HuR8c3dbtc4nvjaMLjBqdfraLfbJszHtm1zus6cQXudhAZdH8chV8RRwM0oSzG3Wi3fSeow+FosFjMTrXSdjbN4Ytvatj1xaNZgMECxWMTW1tZE33ccCD773MgyxA6AL1ltIpEwwhPbLZPJmOpHfAZkmJy0+8uNE9/DXCP1et3kMmi3275KWep6mpyg4ym4UJ2bmzNhlNLxFolEkMvldoU+0QnBBTKvyfZmzr1Go4FqtYparQbbtmHbtinz3Ww2zUZXHRP7h5sTzp/D5spMJoOzZ89ibm4u9HXOvUEnBedXecouYa6nra0tc/gDhM/ZrVYLjUbDFCCQBEO49hKe+H4ZniS/Jr931pD5nYCdtgF2csXsFWpHxxOAXXme5BxKwZFOCulm5Pdy3JabUebykg4NZX8Ew0ZHIZ/3UY4n/i3bUdvpcKHjiW0mC7TQXRwUG1utlnkeuOaV4rB8rVarodFo7HoO5Hw6am4NjrmS4+QaVeFJURTDxsbGrgpLwPZCq1wu+yyowyZNDsy2bZuNKhdZ5XIZjUbDhPONG2rH92mo3f6Qln22Dzcbo0REKTwxQTWtyWGL5mGTZqvVQr1eR6lUCr23YYLUzSpqyLUFNysydwAXSxQKgG3hiYIUQzcymYxxR9FZwwSarLQSJjwlEglYlmUcisBO36vX6yZJPXDzttF+kQmFLcsKFZ4WFxdNG0sikQgWFxd3We/pTOXmmJXter2ecZ4wTJbV7Lixpbu1UqmY3GHc7AI61k6KPBUfNb5ms1mcOnUK8/Pzoa/ze4MOY4Z4tFqt0L7X7/dNKLVMZhvWjs1m0/c+SXATNOxkfpjjSYois71p2qmiSzFCOp5kiM4o6HiSwl2Y44nuVApLfJYajYbZNFOIkhUEq9WqERK1z14f+3U8hX3uUngKtrUKT4eLdAazbWVeJzqe2PbBfG7SyUrxCdhxHdNJHByX5XPB8ThMjJf/Dj534zieOPdP+zirwpOiKIa1tbVQB0y/30elUjGLnWHhdvxas9mEbdvme2SuKFa2k46nsMFUfi0oPOmEPRlS3KFYwY3pqEWqFDrkKS9D9YIbmjDhiQJH8Jpka2sLpVJp5GmhvPbNhHS7ULwFdk7Z5eaHeQqkOJtIJMyGx7ZtXxJxYDvMht8vRQ4uyJhrJJ1O4+zZsyZhcLfb3eWuUsaD4q90J8lnPxKJIJvNhgpPlmWZ1wjD6ORil9fkz2m32ybfHsUlChfRaNSIGTJnWL/fx8WLF/Hwww/j2rVryOfzvvx/SjjSpTQqx9P8/Dzm5+exsLAQ+jrHWz4vhGEdFBfDYA4+VsYLy/vDZ69er6PRaKBYLO66zl75/4BwxxOwM3bJrzG0c6aKEng74pnMySSdK/F4fE/HEytVSkGP/VMKErKiIZEh8mGORHk/wSpcdFcq4xOsprwXoxxP/Oxlbi/pINTx9PCgoAvstAcP2Sjmc9yShzhBkZjzqxTa2e96vd6uisB8nhj5ETbW8p74syd1PHmeZyrrhYVOTxMqPCmKYlhbWwudPHnixo3KsBNUOi1kAmsufLgRajQaKJfLezqepNspOFjrZD0ZdMvQacET7lKpNDLBuIxH54KbJ7th5YHDJk6GWxK56ZA/N+y5CxO1biakwCBDb+g6Yz+Qp+3SIQVsh21Fo1GfBZzCE8tzBwUOYNv11Ol00O12kc1mYVmWSYTcarXMz1ThaTKC4amshEPi8TjS6bRJ8i6JRCKYn5/f5XiiOCFPaZncmo5T5tlrNpvo9/toNpum/HOtVkM+n0e5XDYC1ubmJur1Olx3u0rp2tqaqU6qDEeejI9K9LywsIBsNovFxcXQ15mPKxhqx7l11KFBt9s17U5RIvjeoNM0uFkJjrej8jXJzTWRYWX8nnq9bgqYzFIeMblW4WfJHGqxWMznNh1GKpUyuWNk+Fzwcx4MBmi322bjy80sAJPPKehEky4O6VgsFou4cOECCoXCjf5Iji1SIJIHOaNg2+8lPPE5CjoClcOBYaw8WAO251uGtnJuZiieFP2DOZ5k32UfpbAVFNbZZ9mPpRM2zPEUJnYyYiQsvJqvB8M5p5XRI6WiKDcVa2troV93XdeISKMcTxyYS6WSCeeQ1Xksy0Kj0TAbHp4SjhKe5Ame4zgol8tDE7Iq4chNqMz1xESIruv6RA7AX4GDE6I8SeeiN+w54MTZ7XZRLBZRKpWwsLCAdDrtmxT3miDlteXi/2ZB/r5ccPBrcqMT/Le0lC8uLhr3EsNoeUJP0SOsP8lTPvbTTCZjcnVxw8zn52Zrm/3CBSsTAQdD7aLRKFKp1K6KdgB8lQoJN55c3HKBy79ZzZDtxs0/nSflchnRaBSrq6vmechmsyasJ5FIYGNjw4iVw4QSZRuZg2dUvp2TJ08imUzixIkToa9zIxEMa2c/HuUaYk4vjgNhAhg3SBQhU6nUWPmY5IaZLhz5Gr+PB1RybOj3+z6n5F5izbQQdG0F561gGfYwGI4nN6uywhmwkxy83W6bPh4sCiE3vOzvFMEoTK2trSESiWBjYwPAtqv4zJkzN+KjOPYEQ0zHcTzJEPew6/Fa0iFDVHg6PKRow0MaOoCB7T7KMYvjF/cvMkReFu8A/IUC5NqLr+XzeeOSqlaryOVyPucVCYr7kna7baqFBwuMBK8z7Ye0ulJUFAUAzKA4DIbPccAOmzB5wsqTcS5+GSZEGzmT2o469ZHCEykUCibflE7Y4yND62RixX6/P9SKL+3/bNdut2smarnoJcEYdXnSHvw7+O+we5DXvhnbWwoMFI2i0SgcxzELI8AvPAXzTWSzWSSTSSNC8DPNZrPmdD0oOgI7n30ikfBVN+TP7fV65ufu5XpyXRfVanXqLeCHAfsE7flMXkqSyaTZyAbbJRKJGDeUFAjYHjyxlf3dtm2zmWVRAeahqFar5uuVSsUcCNBRk81mMT8/bxyn5XIZ6+vrN2VfHBcZHkfRIIylpSXE43GcPXs29HWG6QWFDrqZhp18E+YEkqHuEsdxUCgUUCqVTG4g6WYblW9EMmwDFOZ4kuPEtJ/KS2TOF+ki4+86juMpkUgYoU5eRwr8DINn2wYrElKYkuI187PxdboaS6WSWTtp9dHxkWvbcUPtRlW1k19jG0tBa6+xVD4PyvVBoV22ayqVMm0Qi8V8bRQUnqS7WBaOkA4mWY0U2HGSyrV20OVMxumjww57g8/ZNKPCk6IoALYHTC5gwmi1Wmi1WnsKT9xkNptNX6JyeTIvqyjxteCgy8GVuaLy+Tyq1aoZsHUyHh9OjJxsGdfORKZhE560nDPsRpacZVsPy/HERXJQcJLPzTDRKuxrN+PCWQoPfN7j8fhEwlMikTBuFYZZATsLLrrhJPwaw77khpEn7xQhgb2Fp0qlYhLM3+yhWuyL3GQGc/Ukk0mTOD6YsFjmf5JIAVievFKkYBJxOld5KtvpdEwfbbfbJiSn0Wig3+8bFwxdMcvLyyYnmxIONyYU6ocJLAsLC0gmk1haWgp9ne0nx1huhNieo2B5b5kbLhjiyY0Yr18ul33XkGNuWI4oYHfi8aCrQwpPk7hdpwnp2pKfJ7BT6CFMvJfE43HTn3lww42odIQzbEfOoXTP8R7oduMhH9u60+lgfX0dy8vLqNVq5hlh+gNlb4LC0zhwHpSHdfJ6UrgMhu/tJRKUSiWUy2VtvxsAx0PAP7axPehIZMJ4mSdRCsTsjxSB5Fgnx21+jde0bdvMrSzu0Wg0zH14nodSqRSaSzFYwTJIWOjztKLCk6IoAGDKaw+j3W4b8YEDcRAuqMrlsql+JaHw1Gg0fAspIDynRL1ex9bWFpaXl1EsFrG+vo5SqWQGfmVvuCmV+Zp4QitPXYNwgqNYEUyUy2uGbSDCwhLk10gwlC7s3ke9ftyRwiwXM4lEYleYyyjhKR6PI5PJmIWPbA8KUsFFLZNjUuSQ7S5zO42T54niJrFte+oXRgeJFGNd192VSDidTpu2HRZqx1wxwWvK/izFJY7bkUjE/Dy+p9Vq+cQlGZrFapZchEu3zc3chqOQjpRmsxk6bsViMczNzSEWi+H06dOhG1w6hOX4LJPX7iU80bUmXafyXhqNhun3Mh8fGeZ4Cjo1hjlCpAuEBxXymrOUG46/A8UiKQZGo1Ekk8k9RQq6GKWAFXQ8yfBbjgH8eTLnFw+LZIEPKSq3Wi1sbm7uyg2m7E0wF9M4yGc92N+l8CTzB8mQy2HI50zdwtcPhScKS5xjOSeyf3qe58tlyvGcfU0e8siCL8CO+MR2lX20UqmYflyr1Uy+O16Dc6/ruj5BShJ2SM+vk2lfK6vwpCgKAOw6VQkuKJnUdJTwxIlyY2MjdODkws22beN8kAM2B1yeMly7dg2FQgFPPPGESZK5vr6O1dVVdLtdEyIyS4vYw4ZtwoU/F7echPcKteP3MrcIrcphSWt5nXq9bhJXywU64E+uvNcpTdhJeliOjeOKXNByo8nqdWHvk/+WlXnm5+cRi8Vg27a5juu6puId3W+EwhNLvctNrlyQBRPNhyFFLD43N7NoTDFBhtXIfpDL5YzgFJZcPJVKIZlM+sZnumxkfiFa/vv9vumL0WjU9Ht+DzezPBCgw4LPmNwoMWebLCWt+OHGg+PUXsLT4uJiaJgWk9WynYCdTZAMmR0GBUcpNEr36erqKiqVCrrdrnFRBoWnsPF3rzLg8nfkazKhtvycZgXpeOKcx9+Lm9hxhKdkMun7mnS08bORghLDcXnoR1GK47Es9S5FsXa7jdXVVbTbbV9+LWVvpAg4rvDEOTQorsrrBSsz75VLDfC3mbbf9SNzM1FYbDabJtQ4mUwaQUqGB8tQO3nAI6M4eJDL/iqL77Bvcjzm3qVcLmN5eRmXL182OZwA7FqPATvPybC91yxFB8xGZj9FUQ4cbihIcPBiVYW9hKd6vT6y+gIH3VqtBgC+61HcYpn3TqeDcrmMzc1NM9CfOXMG/X4fW1tbvsH45MmTN+qjOFZwIctNUKfTQTKZNJPhsPwPcuPBzRQn6lgsFpo7hNeki6LRaJjE1dy8sjrhmTNn9tyIhL2ez+cBAOfOnTv2Ca2Dp+Oet1PRjgRDPKRYxc3R3NwcEokEut0uGo0GTp48aU7+6IZqtVpIJpMm2TW/T57IATD5heRims9QmPuBC6h0Om1cV51Ox7itbjZk5RwpLpBcLmcWxWGCRC6XM+GOgD+EWYa/UhyioMT3MfxLOhDZ1yksy7bkNePxuCkq0Gq1MBgM9iwhf7PBz5Gfe7C0PUkkEqadl5aWEIvFdjmYmEdECu38WjA8MwyKS8Vi0eSS4vgvE597nod0Om1cyGH9OBhOx9+VrwUJ5rDheMHnSG7mxsmhc9RIkUAKtxSd4vH4WKF28j3yYEeG8rCfyq/zZ/N5YCiePNShQMl+HI/H0Wg0TEGIYQ45jg08ZLjZYRtMIjzJ3F2jQu2A3YLTKJEgLAR+r+dMGQ7n2kgkYtqMh0AydQGwU8k5KDwFq4FKNxvH6lqthn6/7yumI8fWRqOBQqFgDgeuXr2Kubm5XbncJMGcjkHkPDPtov7xXrUrijI2GxsbI+37rIg0KseT627nd2IZ9jC4KG82m74J2bZtn5jEgbnRaKDVaqFQKJjcBc1mE5ubm757C0u4p/hzjnDiS6fT5jR12OZItrGMc5evFQoF42jh1/v9vtl4BDdI0mkRDLniv4dVguKkT24G11OY44mfLT+vsATUwXCYZDKJbDYLx3FQr9d97oe5uTkAMCdx9XodwLZDSVad5PtlCFjQCRCEizaWL6bYdDOHanFxSvE2+LwvLCwYB0XYxieVShkRj8iTWMKwOZaKDnNWsC+yfzMhNTe2fB//MOzStm1f3qBisWiem5sZtiMFgmHzUjKZNGPw/Py8T0gkFCVlqJ1MEj8O1WrVjB3M4VUsFnH16lUz7jP3UK1Ww8bGBmq1GqrV6i73RlBokqF2wU203LRzjg8br6Z9gxQG25a/TywWGyvHUyKRMLkVAb9LUf4JClGAv3pdNBo18yrfw4ITcgzg3E6XVZhjhjlnmO8L2Mnvd7Mi1z030vHEeTuYsDz4fpm+IDh26Bp3/3ieZ9acUiziXMv+y7FKCk/SVUgBWM6LnKvZb5i7Edg52OH/+/0+CoWCyVkrq01zXB+1xxomPAW/Ns1jqzqeFEUBAKyuro7cDA4GA1QqFbPQHCY8lUqlXaf4EoaB1Go1s3H1vJ28UDyBK5VKxmJeqVSwvLwMx3Fw+vRppFIplEol3wlQr9cby0XBanuLi4s3xekRnWRykcrKWBQBh52g0BlBAYFum1gsZpKXBhMNU3iSoSZsYy6oOKEHNyHNZhO1Wg3xeBynTp3adT9y8TzNE+uNQG7e5IZiL8cTABPSxv4Rj8eRy+WwtbVlBAm2RSqVMi4WtiVzCVEw4nPCn8Vnh+F2TFIcTIbNzQw3XMxzQsHlZnQ9ydBWumIk8/PzZiEctvGJxWKhn5s8ifU8z+Rj4t9cIAcdijInFN/HMZ7hgPxDZ0W73TaJqKPRqNnkSnExSDDk9jgiBSIZEhUknU4jk8kgEokgk8mECk8UAKToyw3NsEOdIFJA6nQ65jBgbW3NiJGJRMI4kEulEj73uc/h9OnTZo4Ewl1NYY4n+bUwxxNfo1DCOWWWkP2Xv4vM3TSMWCxmxkf5nMjNLddV0g0F7GxE6c5gLidgp8opr+u6rmlPKfiFHQxIAZPFXorFIjzPw4kTJ0Kfy+NOUCgaB1kFLegElc6+sJymch3jeR4KhQI8z8O5c+d2rXFUeNo/HAMptgedZ1KAopAkD3TYP4NORD4nUoAfDAbG9U84F7TbbTiOg3K5bFIdcP3EKBHpNpZrQCl2BQk+K9N8sKfCk6IoALaFp1F4nmdEIan+B0/GeWo+Cp7aMqSHGxeGfmWzWaysrJgKD/l8HhsbG3AcB0tLSzh37pypDpHJZEZWD5I4jmNC/EqlEs6cOTPmpzO7BE9RI5GIiWWnOBR2GioXYHJCZFgIBangqTjdHHJzHY/HUSqVMBgMTJgf215+LxfCYWIYT5rk73WckYtUhk5RDJC28LCNmzwBB/wJxumA4fWj0Sjm5ubMqZxlWVhaWvJVeqFAwo0IHU9B4SkIxwGZ2ySVSsG2bbTb7ZtSeAomHg1+btzsy+Txklgshmw263uNzibZbyhSMMF00EUBwOTe4XuazaYRK+U91mo1NBoNs8kuFos4efIkkskkBoOBEaFkwnqJbduo1+vm2TquG1r5mfFzDSOTyZgxeJjw1Ov1zEaJ4zddUOPme2GCcQBGVKQrtdVqGTHEtm1sbGzg/PnzeOSRR/D85z/fVN27/fbbR/6uEo7RUogJCymSVVFnBc6FwfLqFPb3Eini8fiu0FRehyFywZBZOd7LQza53uEhgFyXsSAI3YnAbsdTMFci5wW2U7PZPLb9dBRy3TOp4ynsQFa6YoAdhyCFDdkvpGNKOmH5PSo87R+ub7hn4fzKg9hgbidZsZf9inOoTC4unxO6qDj3yvaVuR3ZLzmfysIdPAgEtp+HeDyOarVqcvAuLCyM7XiaVlFfhSdFUQDAF7o2DNu2fZOfHNw4SZbL5T0XxkwuzrxB3Phwkdzv903Fh2KxiMuXLyOfz8OyLDz22GO47bbbkE6njZV8XOGJdlcu8iiSHGeY14NCj9y4ysUuGQwGKBaLJhfIqNNuGR5AMYSTpcz/I8tAu66LhYUFANuLXblBCQvtkP+fpTj260UuGphEll8fx/EE7HxGsVgMiUQC6XQa3W4Xtm0jm82a76cgMD8/v2vBTUdEMM8TsP2s8DphfZ79WQpP6XTahHZI4fpmgS4WCrrBz21hYWFkwmIKhcHXZD9mP2QFHRnyyM+bLhSKUqw+2Ol0MD8/bzZBdIjy+nNzc6jX62i1Wuh2u9jc3DSnuABwyy23+O6LhxH8d6VSwenTp4/luCudKqOEp2QyaRxPlmXtSjpNZB4mis/MrzUOzWbTF/ZMQajX62FjYwOZTAbRaBSrq6t47LHHcPXqVfPeF77whchkMpibmzPjCHMHyc2P7L8MGYnH4yaEN2yclqf4s4DMacdQO36dm8e9xjG+L5iDT25kg2IQ+6x0Y9AJx77Oa8qDJSmOUWAM5m7jsylzbkkHlMyHczPBz3ES4YltxO+XSOFJumPka0S2vRSemJ9xVvrLNELhSYZRUjjmIYAMb5fiD4XhoFAs25Q/A4CZR4PCE9fCXJNns1mzh5KCM+dG/r/RaBjRey/HEw+bpjnn7fGb+RVF2RdbW1t7vqdSqezK2RNcSNXr9bEcTwz54eknB95oNGo2QcViEaVSyYThAdsTxtraGk6fPm2qSQB75/yp1+vY2NhAtVpFNBrF2bNn0e12j+UGSMKFLYUnhndwsSpD4ICdjXGz2US73UYymfSFRXDiBHZO6LrdLjKZjM9WLvMA0X7OnyVFKW66gm6MIMEJ97gLT3LRy/4UzEMgvwbshFvxs5GfEcN7mNODp9l7iVgMDxkmPIW9ztf4LMgQvP2E23U6HTSbzWMRHisdT2HuFYp/wzazlrWd9D3oFpQLV8DveJICcVDcZf/ls9NqtbC4uGjez3x9XGRHIhHU63UsLy9jdXUVnU7HuGPW1tZw7tw55HI5I24zfJaVFemsovh8nJAn4nQ9hZHNZpFMJk0/pkgTRJ6a08HIeXMcGO7B3FCpVAqxWMy0Caufra6u4h//8R9RLpfhedth72fOnMHtt9+O9fV1pFIpU9GWYkaY8GTbtqm4KMM+5d9yQz8LY7iHHeFJhhgDOw7gYJXJMOgu4/zJz0M6U2U5ddmXKQ7xsIgHdfy/DPPh88dwn42NDdx+++0+MVpWu+O8zMMpOi7kvH0zIZ38kzqeZFjssOsFQ7NkH5DfG3Qsq/B0fTD8GdgJj6OYyzWI/Jp0L0m3kzysAWDEKnlNuQ4LRhxwXm+326jVaub/MnecDMmVIpe8jyAcFxjRwWIx08jx3nEpijIWnrdTbWwU5XLZuFSCAyD/zxC4UbDy2WAwQCqVMoMzhSdummzbRqFQ8OURajabWFlZwdOe9jQ4jjOW8OS6Lra2tnDx4kXU63WcPXsWqVTKbJCOs/OJIRo8xYvFYkZ4AvwbYb6ff1OskiIHPydOsNICzjaQoWByw8trh50O7iUs3WzCkxRYeDpNsTBMLHLd7STPFA0TicQu4SmbzaJSqcC2beOaCT73juOgUqkgGo36Sr1LZ5v8mlxESyFahoIEYbjdOMIT8yEAQK1Ww4kTJ8b49KYXKc6GOTUpPA1zPEUikVDhiZtR6Y6haBQMFQD8SaJ5qluv17G1tWUqoEm3JDegnU7H5N/jPPCMZzwDiUQCtVoNFy5cwKlTp3Dbbbdhfn4exWIRrVYLnU4HuVzOzB/8PY8T/Mz2CrXL5XJIJBJmM8HKn0F4Si7FLFl2ey/a7bYJk2aYHivY8bXV1VWcP38ely5dMuNrvV7H5z//eSOO1Wo1tFotpFIpI1Syn8vnSB4kMBybz5scu4e5Q6YVPucMk5H3zeTie4kUdLZx3pROCtk3gwUAIpEIEomEydEln69EIuGba4MbZM4FfL1arWJra8sc2C0sLJgy8HREURyjU/JmFJ6kqDAOwbxlYdeTYx0FirBQO/lvvibnW2V/UAxin2LYWyKRQCqVMn0imMqA+5KwJOMkLGE819wUgeUhHOdV/mwKv+VyGYPBAE9+8pN9Ipd0KgaLiBC6ljlWTXOBgOO501IUZSJk7qNR2LZtRJqg8MQNT6vV2rPqDjc5dL9woObGlXmiGGon6fV6WFtbM5WUuIjlpBC2WGi1Wrh8+TI+9rGPIZlMmg3R2bNnUS6XTSLVTCYzzsc1U3ASkom9U6mU+dwYRkOCYXT8N7ATliU3G8CO20UKT8EFcKvVQqVS8Z0OBxMdD1uEyd8l7N/HEfkc0/nATYJ0nbEdG42GT1RoNBq+EtlM/MxwkUajYSqoSWTp7Wg06nOqMMG0XGhT/A0mIOczEUw4DmyHGslKSqNgeCwAI4LMsutJ9q9g32MeGJmDIgiFp2CiWhk+DMCIFFxsy1NaeR8UDbnR5KHA0tKSccoAO0nEK5UKrl27ZkJ4aOuPxWImjHNubg6NRgO5XA71eh2O42BzcxMnT55EJBJBKpXyVdw6LsjNwiiHwtzcnE94GuZ4ki42bn5kqNde0PXCa3W7XViWZQp2OI6DS5cuYX19fdfY+/jjj+PJT36yKejRarVMLqOwQx4+X/LZZU7Ic+fOmffNmuMJ2C2uyYOUaDTqq1Y36hoUddhfZdiODNGULuRIJIJ4PG5+jhQhZf8JFvDgZlgWflhbW0OhUEAmkzGbXs4pFMFPnz7tE55uNvbjeJJCUtiahteTYc4cd4eF2nFtPCqMTxkf6ULi/oV9KphUHPCnK5CCcDAvI1MfSDc6+3G5XDYHL2xr6fa2LAupVArNZtPsh5iChGtoKUBy7B3meOIzw3FqGHS8JpNJnDhx4tAPgG6u4F1lqmFnHBVuoxwMnU7HJKEcBfN6SNsnkSdscrMYRq/X8wlPVOsBGMcTw+yq1equ7y+Xy6hWqyZh7V4L2fX1dXzsYx/Dgw8+iH/4h3/Aww8/jHq9jnq9bk6Ex/n9ZxF+tjyBpwjF051gjicpNtHOLy3/wM6iNrhI5kS5ublpcn3xe/lMtNttlEqlXaEowTCgYZb14H0eV6Sgys+RGw3P83wLHQp7AExicJbpJQxxo23ftu1dJ3XATqUjx3FMn9hPuJ3MQRKEGzU+Y6MIvj7rmyEZTsxk3oTJpgFMFGoH7M7xRMFZ5rWQP0tufChqULiSTqngWJ7P55HP57G1tYV8Po9Wq4VGo4F6vW4SYtMVwzG+1WoZtwj/jFuZbZbgaTg/x2HPNh1P3IAOCzvkqbkUJbgxGQeKiIA/kX2z2USz2US5XEahUDA5uCSFQgHLy8umnVqtlu8UXeYMYmJczskUJJkQt16v+zZPwYOLaUeuLyi2UxDguDqO8JRMJn3vlSGU8trBzWYwWTufhTDxgteSYX2dTge9Xg/nz5/H1tYWqtWqcZwzRxQLudTrdTOejxvSeZyQDqUbITzxb/ncy2Tkw9Y0fAakGDIr/WUakUKqDI1jfid5oCaFQTkvBg94+D72aenudBwH1WoVnueZCt58P9c9HFNt2zbFloDda3B5oDiqKIN01o1yPHFOHzc37o1GHU/KVOB5HjY2Nkxi07Nnzx71Ld1UjFOJDoDJAbKwsBDqeJJ5RUYxGAxQq9XMCSwXXQBM1aRWq2Wsp0H6/T7W19fNxlieDoSFDj344IP48pe/jGKxaE55WRmPdvVxko07jmPC/paWlkLdHNOGPCm3LMskmOYES9s/kZtU2b6cYIO2Xyk89ft9bG1tIRqNIpfLmVNybjoZtlEul3eFJ8jr8tqSm014kgl4KTxxgcTPSlY5YphEOp1GLpczmwtC0SmVSqHT6YSGh3Az2el0UKvVjBsjLJyVDpdhwhPfG+wjUsSkEDqqz8nFIsWUWa62REs/863I5zgej5vPa1iICx1P8jPjQlfmieh2u6ZSFZHtx0Uw+znbUjog6DCTeSxKpRIqlYo5rY1EIsjlcub3OnnyJOLxuHG1AjCnuwytvhmEJyn4BVlYWDDtSyExDFmpUIpZkziemJtJilg8QBrlTvY8z4hS8hlhJUNeq9PpIJ/P48EHHzTPQlCwDB7qSBFlFqCLQYa+ADBj7jjCEwCTPykoMAXFxWAon9wYcwzkfCrzPMn7i8fj5prtdhsbGxuwbRuZTMYUDGB+JwBmLcYNNXDzCk9yzBsHKTyFuUqJTFwdluMp7CBXhacbA4V3GcYuE/5TtGHorBQGZUW6oLBI8ZnrE/Zv6YwE/KkH5FjCMTjsQF+G9cl7CuuXfG5lYvLgmpoEnXWHvY9R4UmZCorFIpaXl41Nn7l3lMOhVCqNFRPcarWMUyIoPHFhupfbidRqNbMh4eBOR0ej0TCL5mFsbW0ZC6vcpHc6HWNNB7bzGnzuc5/D8vIytra2kE6nsbKygmq1apLcyvCgUZtgmdiVAty0QycE8zUw3EqWiw07pZOTHl/nZikej5uJTb7Oz4euGl5bClSWZZmNp9xcB8Mkg5srhvmk02mk0+mZ2bTsFz6TwRN2+Rnx39zEs/8wb5Lsi5FIBOl0GqlUCtVq1WwgJRR5KAb1+30Ui0UTKjPM8UQhSDpuwoQnWrwjkYi5173cG7xOJpOBbdvHwvFEISBYoSyRSJhwpmHhhBQqwk7NZTgARQqZm0KO11zkyo1wr9fzbVbpjuR4Yds2Go0Gms2mrw2BnbDMfr+PTCbjCyOky4t/ODYMC40eRqfTMQv9aUSGZVDoCWNubs73O8iQWIlsR85tsoLgONC5Jq/B/9fr9ZH9ic5imdhanqiXy2VcunQJX/jCF/DFL37RVGnKZrNIJBLmPvlckVl0PHGzKHNuMQxu3OeRZduBHWcNhSLZRkHnjHRVAPCFPfO+ghtMJj0fDAaoVCqoVComzxodUIuLi8jn82bMkOXdAX8+upsFOZ7eSMcT16kyjC/oiAoerIU5ryYdM5Vt5IE4RVrLsnyhdtLxJNfBPNCRoW5sl7CwePk9wbk3mOKCBzyNRgNzc3O+54//pquY+5PguCl/hhT1eVgpCa4D2Nc9zzOH6qdOnboxH/oQVHhSpoJisWhOZplQWoWnw2Nra2ss4UmeoIad7rTb7bGFJ9u2zXu5UaWgwBwUYWF2hK/3ej0zuPIkPh6P4/Tp0wCAy5cv4/HHH8fKygparRaq1SpisRiuXLmCO+64A+fOnfPlsBkFw8Tq9Tqy2Sye97znjfW7HiUUfwaDATKZjElwCsAX/kKkXZgn97VazRfHTqT1GIDJayLj3LmpZY4n3hNPy4PXCtuUeJ5n3Gr9fn8s4YknuLOaHFXmdZALJrno5Hv4On/XdDptBD7p4stkMia5pSzJTWT4Izc1fAa4+SRhoXYyZATYSY7Lf1NIZviHvPcw+JxQNDsuwhPFHjrVSDabNZ/rMAF8mOOJobSy31Hg5QKUnx3FG2565QJZfi83qFxc8zmgY7LZbCKZTCKTyRgXY6fTQSQSMf09l8uZ55RjD8eEcrmMVCqFTCaz52aKufgATG0+PpkDaJjjKaz9hq11ghUJGQY5ifDUarVMP+I4LMP2RjnParWaEZ4Av4ODbtaVlRVcvXoVly9fRr/fR6FQQKfTwdmzZ3HnnXf63Mgy1Ch4PeI4jplfp2Xslgdb0gnMtca495lIJIxrGPAX3mD/o7BFN4UUQaRLUTpFg8+ZDAPkmE7BMhaLmU2s53nY2toy+WgWFxdRrVbNZnyYi/w4w3YYJ2E8oStplOMpKA5KcSMoPMk1kGx3Xl+Fp8mRLkF+3hSNpaOX/5d9jXuDSCRi1riyX/JZke0mc/xR2OX7gW3hiZWgGXa/tLRk7pfzYyQSMa5TVpkOm1f4s6Qrnu9rNpumqFBwj8P/M1QegHG2HhQ3z2iiTC1MdAtsL0wpDvCUVDl4eOq1F4PBANVq1XcCSCg8jRtCwap10mpuWZapmsSktMOo1+tYWVnB5uYmFhYWzMaWp+50E1y5cgWPP/64ET0AYHV1FV/+8pdx22234VnPepap9DNqUzsYDPDYY4/h4sWLaDQaOHv2LBYWFnDHHXeM9fseBXIjRLcRRQmZ4yks1I5twjwtdBsAO1Xrgqd8XORygpaJ4+luYwglJ9mwXAfyPpjoVApi3W53ZLiVDIm85ZZbZvLEVm52pBgkx0RuDvg6N0DcdDDHD0N5ksmkWVBQqJDwBI6OwXg8bsI0mAz69OnTJmyP3wPAiLcUMkulEizLQiaTwdLSkhFACAVKmSsmCMcSbthkOMksboY8+IWndrvtWwjSEREm8pJIJIJsNht6MssxmX+4+JXhM7yGXCjLsbzZbBqxIRqNGleMZVnm1JhtwFxQmUzG5PjhIrlWq5mQnmw2C8fZLtVeKBSMWJlKpbCwsIDBYIDFxcWhnxtFMMLEqNO2PpB9cZgzKR6PY2Fhwbd5HJXjSYZl0SU3iduTzxjHWNu2zfX2ymvIDdHGxobJScXnt9vtIp/PY3NzExcuXMDKygra7TYqlQqWl5fxjGc8A61WCy9+8YuRSqXMvCA34GEbKDqh2+02zp07NxWbbNlP2A589mKx2NjCE0NT5eco+yyvD+wIFdKJIcdc6X7gWEoBmqE5FJ4YdsufwzQHrFRYKpXM4VK73UaxWMSZM2cmHmtd1zWHhWGFK2YBrkcnzfEU3OzzWvLfMs9T8GcC/iIuUtwEELrmlt9/swmEkyIdqOw3kUjEpNqQ6005//IAT0YASKFwmEuKoet8Jtjf+bPZrjwQ4kEpr9doNHw5E/l9wVBc27Z9Liau6/lMNJtNE07NMD8J5ys5v1LgOiiOfkRXZhouZORDOymtVsskPKTlsFgsTnU5yOPGxsbGWO/r9/tGeAoLteNAOQ4yj4w8PWBC0r0q4wHbScNZ6lkKKL1eDxsbG1hfX8cXvvAFrK2t+b6v3W7jwoULuHbtGnq9nlk4jnI8bWxs4PHHH8fVq1dRLpfR7XaxsrIy1SFf0i3DhUkmk/EtqriIJfIUTk6c8nuCJ0JSeOKEznZlHh/pmvA8D+VyOTSPk7x3wD/xA9vPzcrKinl2wpDi5yTugGlEhkIG804wNxmw87nYtm0ERgC+fsRQLgo+wban8MQk1/F4HOVy2Wy0qtUqNjc3jegoxTEZukkBolKp4NKlS6hWq6ZN6G6R+RKGCb4yhJCnkaPeP/V4/lC7YAgSnTCj8otYlmWcUVy8sq9STOSis9vtms+QC2dgR5iU38/F8tramhEcKN7ypJihd+zXzWbTJEZlgYpGo4GtrS0A8G142XZMaP3lL3/ZXH+vwwoeTKXTaZO7Zlxn7WEhxzuZ4yNIOp3e5fCSJ90SJsTlGMvPcxKazaYvFIMutuAGZhhMGE7Bn5sths2WSiUUCgXU63XYto21tTU88cQTeOSRR/DQQw/5wgO5ORvmeGIooPz9pwW6Fvj8s+9wTB0HVpGTG1g+K9LVBsC4FPlZyXGB7+NGUn6mnH/pxHAcx7jS5OaWY0Wr1TJ9qd/vm6qmfF4med4oNHMdP4uwz04qPMm5kARFKLlukgQP3ihiyXbl361WC4VCwTcHVqtVbG1tTVV/mTY47hGuR2WoHbBzuCfFZh7gBJ1M7GPBQi/SJcV25bzPZ4Xv4ZqYET98nX2QYwP7f6/XQ7VaRT6fR6FQQKFQMJEf3AdJ9518JmRFVJkLSq7h+b6DRIUn5bpgNZtisbjvqmBra2u4dOkS/vEf/xEbGxtmQTNtC8vjiud5u4SZUVBhDzvdYbzyOHS7XVNuGdgZcFlpbpyFC8XK4CDP8IJ6vY4vfvGLofe0tbWFlZUVFItF3yAchud5OH/+PDY3N82zvrW1ZTZd04oMneGClGEdXJwGkyBywclNFP8tQwSCCyden5teTuRy8pNiRVCwAoYnD5eTcK/XwxNPPIG1tTWsr68PfUbkxDnrCVKlIyi4GKZjjSJoqVQyQg8dYfLZj0aj5iSLbSZf5yYoGo0im82aZ4fPSaPRwNraGsrlMgD4xCYpCjUaDdi2jcFggFKphMcffxxbW1vwvO2kt7wHtnHYQofPH7CTu2rmhSd4ZgPe7/d3zXHz8/OhOSMk7MPSZSE3kxRxOCaGncAP2wBRcKLAwTYEdhw83LzS3UoHSKPRMAvlWq0Gy7KMuMZcODKvBV2trOw3bOxttVpYXV1FuVw2og3vZ5rg50wxd1iFXj7/0g1CB1sQjs3czPDznATOp7wXilnBEOthMPGtPNThdS9duoQrV66YjY/MV7K5uWlcUHRpBfNEBcf8sNDfaUKGsnJOnCTnGMPy2Fel44l9Va6tKLZz3JfiRq/XM7kW5ecpHTLJZBK2bZuDMuby5PWkM5zu5kajgVqtBtu2ceHCBTz88MNjr3FkIQMeMM0a0n1/vcJTcD0zbFwfJTwFHU+sCMy1j6xeKz9/xQ/FdtlXmEhc9i35bzqsua6VrmK+BsD0Uel6ksnMZb/me2QaCva3VqtlrsOfSbGfa+pOp2PmzC984Qs4f/48rl27hqtXr5qDH/6MoMtc/l+G6XJM5xwk91IHgQpPyr7xPM8sUguFAq5evTqx4t7v97G2toZHH30UV65cwQMPPIDz58+byjnjXmNrawulUmmsEzzFj+M4YzueAJjSoGGOJ3nCvhcs6S5dNXymxnU8FQoFI4RJVwwnmcuXL+P8+fOh39vr9ZDP51EsFncl5At77+bmJi5duoTLly+bTRMH+mklOGlGIhGTyJYnOzKhafAPJ0bP28k3IRdZcuHMvz3P89mX5T0wZAqA79q8jkSKXLx2o9Ew5bm5aA5DblgmcTxxQTdNC2YuPGTIhXSuMK+KPKErlUpmERPMXZbJZHxtw/5Kt0G73UY0GjXV77gQY5uzb8oQDJnnqdPpoFKpwHVdI45wUcW8MBSS5CItiMzvFMx7NMtiohSegvl6lpaWTILfUY6nVCrl2+yynWUOGrozpANKhkUGr8/FLoUJJgEHdsRfuUnlNblpptuB/ZKiCX8+w+gpXgEw7ghg+ClrsVg0z1q32zVOPjneTwO8F+k0C3uu0+k0stms7/On4Bik3++buYwbmUmrAfIz5xzA/48S+yTNZtMUjRgMBsjn8yYn0NbWFpaXl43wRDzPQ7VaxerqKorFogmVpiNA/u68r1KphHw+j62tLTPHUizZ2tqairbmWCxdA3J82gtZAS8477G/ytA7huYA8P0c9m8ZOiPnSb4/Ho8b4ZAuQVnRlM+p3FTzsOCRRx5BPp9Hu93G5uam+R2CIgkJ/mx5cDBLSAfZuCH6nJcB/9wk1zCjrinXnRQe5DMAwLQXr0kRQY4HQQetsgPnWq5fuR6Vwi6w8/nLKpL8rIMH7lJMDOZb4/wXzHEXzAXGwx6GPjOkju/hfMswXYZOO45jBOXV1VWsra2ZEFopWvF34j3x+ZBjFvspfwZwsGssFZ6UfcOHmzGkW1tbWF9fn+garVbLCFasbLe+vo7V1VVUKpWxBtFyuWwqd1y4cGHs71O24QA2LuVy2Re2If+mMDAOTFQuqyrQgREMARp1Lzxd5+KWp4Dnz5/Hl770JRP2Ecba2hqKxSIAfxWxIPV63bg22u028vm8OeWfdseTPNmORqPI5XIAYBbA8gRXCgHcbHAhJkN7pPtGuqN4osRTXWDHeTEYDJBMJk0JZyleNptNbG1t+UQ8uWirVqsmvI7XZFhA2IZEfm3cCZQCzrS1KRcPXMDIxau0XkejUZw6dQrRaBS1Ws04VoIbAOYR4qkb3WTM2cKNCoUIWeVocXHR/ExuYIDtz5giU71eNw6JEydOmEqK3MCy2hKw0+fDNijBSn0A9nQmzgJBZ4xkYWFhT8cT+xdDZoGdz4N9me4TmTxcOufkgjsoNMtTUfZP2eZB4YBjTKfTMf2GB1Jy0Z1KpcxYxL5dKpWMg47Cg3wWXNc1fT6dThshlM/BNG1sg+06TCBKpVK7hKeFhYXQZOmyPWTS90loNps+56oUkca5FjdGAEw4ZbVahW3bqFQqRogOjsPdbhcbGxv4zGc+46vwFHTNUgzrdrvY3NzE2toaHMdBpVLB1taWeY6PckymACBzvbCf0jUxDswHJTeW7HecP6XwRMGf40EwvJ0b46CLTDqkmMuJwhavG41Gzc8kbJ9isYirV6+aiIZms2l+TqFQwObm5i53DZ8lebAwbY61cdiP8ARgpPBEwlymgD8Mmu3GtpCCiBTbOX8Hf94sH8ocJNxXSGdpMpk0Bzj8nPl/6TJnoQg5j7KdODZz7cs5VeY7DYq1UniiQ5Q5ndin5WEBD25YabhSqeCJJ54wYyT7aK1WM0WXwhzjvFcAvjBe6Xg6jMM9FZ6UfcPNBRedXGhM4nqq1+vI5/NwHAfFYhHr6+smYfT6+vqeGwy5oOFJ2f33348nnnhC453HhAnDx4ViEQdSORFOUnWq1+uZxNXAzokdk9OOc7JLazht41xU1Wo1XL58GZcuXRp5Hbm4HSU8MWygVCqhVCqZHGS2bU+1vZmbeul0YKgdN57SJcE2ZagrJ0PpeBm2eeDmhgkbOSnLamiJRAKpVMo3qdL5BsC4jWQiSIqRFMN4UsWxJ+x5k5ugcUUKKZhO09jBMBlWows6nph/JZlM+kQGhjoEk+YnEglfTjPXdXe1NTeBzWYTiUTCfD9zEDFfglykyHCqVqtlQj0oVjG5PN00MvmtPC0nwUp9/H3582YVtp10+xAKh6NyPAEwjjSJFCYoQPH6UiCWOSlkAlUZVhAM14vFYsYtQeQmHIAZC1utlnl26MigWEHhQiatf/TRR1Eul7GxsYFWq4WLFy8asYkbZj4r/L24kJ7U/XOQBN22w0SxdDrtqywKALlcLjRBNUPr2C6sKjgJMhSHYY4c88fpR8zjxc0W571qtYpKpYJisTj0nlqtFh599FHjsgpusIHt/sBQPG7AHMfB1taWqWTKax0VnNek8CfdmOOGZAWLJPDz4EZVhrzzb+bk49/ATl/n/C3nZHk4IccartNZJEQKzdI5JQ91isWiybnJOUWG5Umk8CRDsGcJKcJP0q7AjmAxLNRuP44nKSgyrF5eMyg88WvKbuQhNz9j5lyTX+PaVaaLkAewUvxjH5bCMABff5Z9lHBdLNNRcL6mM7FYLKJUKplr0PHLXF4UgOv1OlqtFmq1mvn9KBTz/3LskNX1gl9T4UmZemgDdxwH8XgczWbTTFTj0mg0TGI8mdsnn8/jiSee2PNEUy6EbdvG1atXcfHiRTz88MPY3Nyc6ZPxw4IK+rhwMyBFBwBmgzHupt1xHFMliYsknn6Om8ui0+mgXq+bDS0AI0LSwTIK2sht295TeNrc3DSOnG63i+XlZdi2bTb+0xAKEITCDgUFCj/ATvUOeZpOeKojT0g5IckTVf4MeQ2Z8yJo92V4H9uK7S0XYxsbGyiXy0aMor2cm7loNIp0Oj1UeAqeLoUJGmFtLJ+3YJn7o4KfK8PW+LtJwYCbdNlGrErHPik36J7nIZ1Om5N3bijkiWCz2cT6+rovHCwSiZikyHxvcJGSTCZNqCwTdy4tLflCLTk+cDHEzzkYqhM8rQN2hBJummYR9p+wZ/fUqVNjbXpisRjm5+d3OY/YJ6TLkGOTHLO5wJTjLq/BHBK8HjdLXBgHww3YNykgFwoFNJtN4zzmawxt5vtkBVQmxac4VavVfHlMcrmcr6IXRZppczzJjcmwTTeT9su2oxgVdk1+5lxv7cfxRNGXopgMwRwHupq4+W21WlhfX0epVBpavQ/Ybp+VlRWsr6/7Tu8Bf/hHs9nExYsX8dhjj+HChQt4/PHHkc/nsby87BNBj2pMlq4/KZLLcuzjwPdLpyGvJxMYy/GNY7kUk+QcFxQ3AH8YvQzzicVisG3bzBV8TYbR82s85KHjjaHSwPZae2NjwxQHAHY2r2EVT2cF+bnu1/EUFAHl5ypda+P8XOku5Rjsuq5Zw0nhSVarVXYj84wCOyHrwSrBsh053vF75cEO3yPD7GQ7BtNIcPyT4pQ89JXjNCt609AhRWIe8FQqFTPXdLtds+bi9Sg2A35BaS/hadQ+6EahwpOyb+SmpNFoIJ1Oo1qt4pFHHhk70XipVDLleqVzqlqtolAoIJ/P73kPAEzOgdXVVZRKJVy4cAEXLlxAPp+fSkFgmmDI2LjQGRF0PFFEGPfzZl4QGXoxGAzM6do412E+GXl6SwdXv9/fUwR1XRdbW1uoVCpDB9x+v++rZMfJn1W7KLjy9GGakKF2dKDIfDkyVEduCmTlHbrB5IQsrfwUnoKJxaU7hadCDEuQEzI3xJ7nmf4PwIwhHGO4iY3H40in02aBHFxoBZ8b+f9Go4GrV6/ioYce8oUFc8MomYbTWmnt5mdKMYCfvXSBWZaFM2fOmI06F6Yyb9VgMDAbXQpbDMfgIcJgMDAbFH42DBPhyRvFTJksMxaLmXBb3sP8/LxxbSSTSdO+FA/4DEoRgc+SXDDxvYexMDpo+KwHf4dsNmt+71GbHiZ/D75HCpVsI5mHSS6Ug5tZGZZHZ4PctNKZwvuXJ/QUR3q9nkmUSoGC/Yjhd57noVKpGEE0EomYgg18b9BNmsvlQsM6pynPE8dBCkTDRLFcLod0Ou0TK4ZVRqNbieMwc2xNAq/BdqLAMcl1GJ7HOaNYLPpC9obheZ45WGQ4XalUMg7rQqGAa9eu4cEHH8RDDz2EtbU15PN55PN5k35BOoqPqs9TAJBirnQ8TRpqx2sSjrFyM0o4rgcdT+yDcjMr8z0xlI5t7bqucatyLpEuZRnGF3TfUCTmppvjQKVSMQnl6/W6+RmzKjxJB9qwsLhhyHlJioK8Fp+XMJFSChbBFAZSqOAf6fjke1R4Gg5d3bKvADv5LknQwUhBVoapys9Xhq1K91JQoAJ22o/3EAyt5fhO0QiACdlut9tmzORel/MCHemcpwGYPivFYP6eQeGJh3xMhaDCkzK1SJW2WCz6Ykzr9brP9jeMwWDg+15ujFmaudlsji08sWMyN0C9XjeLnWkOhZoGZCnPcRjleJIq+zgwHwwnZS6Kxw2hoOVbik5Xr141yY3H+b1YjpSDMDdRpNfrYX193eSz4Gl9tVo1ia45KcgqUNMAJzSKR5xoZR4ZeeoqT2vkNbhZ5ckdsBMqIYUnCkzc1EoHACc6Ck/8nIaVe5W5UuTJHxfv8gQq+DuH/Z9iIZ8JPnv8WXwGeZo4LcITPyd+ftK1InP5pFIpJBIJZLNZI0qk02njVuDv4zgOstks4vG4EXjoOuDP4WfB63Q6HXNSz8+eizFuMvhZ8n4Y0kdXHTdPXGxxA8ZnTvb5oDglmfUE4/w86BojsVgM6XR65AaFWJaFubk533tkSAD7DgVnYKdPs29ygR0M7eBClKe8FB15vTDBVy7IuQju93eS//NwioKTdEfSUcGwzkQi4QvDjsVivpAIuvKmLZxHjoPsG2HkcrldoXapVMokTZdQxGLbUhCcBLYlXXbcGE/iFqMzmaJCqVQyYVt7bVAajQaWl5dNyB5DcRlSVygUzJptY2PDhL7TAU83dtjhwGERdAPx//txPDGUh9dlv5OfJZ8lWXGLApQUMqQIJsUOzu/SbSjDqrlZljnXZFiRLAbB/FN0dvd6PfOsDgYD1Go1lMtlVKtVlEql0LXFrCCFImB39d5RyGTUYcITrzduqJ10QEmkw4Z9WLqdZ+nzPiw8z/M5M6WAJz/foHtJ5kCSLmKuZ2Rf43u5fpJjhbx+sL8CO2sCmY8P2BHMOA622220222zzwZgnIu8N+YP5DqMv8swx5PrurBt2+xr5Jx9UKjwpOwLLkC5WGDOBhm2sVdM/mAwQKFQQKFQMKfnuVzObBAbjQbK5bKvg0o4OXvedm4hqraMdy2XyybsQxlOtVqdKFdGMJxOtgOrM0zysyn0SJV+kmuwRDB/fqVSMRubcZxcm5ubxvHEnE+FQsE8d7Zt48qVK8adRTGHSaj588k05QfihMRNQyqVMidq0vFEwU+eykgBSIbmBE9I5fu5mZQTsXQ8cQHNewNgQi0TiYR5L+DfSDuOYyZYbk65EeHCmRNzUBjjYpmhklLoCE6yMkxwGja00hHGTYhckEqHYTKZNNXOLMtCJpNBKpUyJ9Lyd00mk8hkMkagYGgF27Xf7yOVSmFpaWmXgCEFAF4L2Nng8t6A7YXW1taWEWm5EOp2u77cJdysy2eCv1OQWRaePMDko+OmjjD/GjecozY9kUhkl/DEPihzL7I/yY2NdB4GnVUyXEwmpA5+TS6ywwToVquFSqVi5mAeCHHs5CGV4zgmUTXH8Gw2a4TQfr9vXJrBjRXHkWnJ88Tfn66nYc/n3Nzcruc6FouFJhcHdkJE6DTZT44nivfsyxQTxoVtwTZgZdtxwt8YbidzzfHACIBpf1kJkZu+VquF1dVVs547yjGZn1/QFTOJ8MT5hdfgM8KDH/Zh6WSSG1sWeuDnI50Osh34Xo4H7PNSIE6lUqY/DwY7edMajQZqtRparZaZZ5vNJq5du2YOJ3j4Q/eFXANwDpjFfHxsE7m+GRc5DkqBQ46XwWsG3Uy8DtdZ0qEjD9T42Urh6Tg4gQ8KCjhSYOUho+y7UuDlZ8oQx6BzWLYp51JZLTjojqSbUDqTKAhRJJYHrczZScHMdV0zRjIMnSHxXAN7nmdEYa6Fa7UaisWi+f2DB5kcI/j7BCt3HgQzJTw5znb1rYsXL6JQKEyNxfpmhJ2KLiNWB+Bmbpwk44wTZ1U6xtty0cbklcMWSHIRYts28vm8OSWjNZgJ5aZhEzmNUDycZHHAwY+bYClWjBtiSbgY5UC3V2LWMLip5XWY82Zc5xRPD2QiV+bGAbYX3VeuXDHPUDKZNKfP6+vrJkSEi/Jp2QgBO8IFcyNxc8NJR57OcDHMCYcTJL/OBTa/zsmZk6IMj5KOJ+luAOCz4XueZyqocaHMkyh+r8y3NBgMzGJfTuRMhs7NLeC3vjOUZ2try7hw5CKZv7MMEzjSMeP/rk2ls0SeJAPbv1+j0fCJNTKUkkIU8y5RhKWINzc3Z64vS/rys6UDR4ZxUMzlMy83LHSpMicJ+8eVK1dMKOqFCxfM4or3yMUafwe5KQ5u0Pl88X5mjv97/zygkc8Y+ycXo6M2s8y3JTcy7MdcmNJRJV0V7PNsI9mP2fflQpvPhxSeGCbAa8p7pchLgZdiCfO4MUy0Xq+bAwy2d6PRMCEjlmUZwZTPSHAjO215nuSGI1gtTDI/P78rrC4ej5uiD0FkGOM4DqMg3LzIZ0NujseBp+fcFHO+HOeQaDAYYGNjw4TESzGD4wk3RRRHuAGs1+uo1+vGcTdJSoAbCfuQ3EwCOyGSkzqepFDEfiKrSfLnSWefzMnG9/DZ57wpXTN0M3Be5n3y/jnfct3E67NwhHTR0NHE9RrHKjo3e72eGY84ts/iAQE/QxnSPS7SjRx01sh2G+Z4kq9LZ0zw/VJk4hgsD/pmcl48YLjWY9tyHgwTnoKOJ46bMnxOutqkWCVFQilSyTk6GH7Hfsm1NMd42X8Yblcqlcy/WVW4UqmYnIiu65o1PkNjGWYtK1MCO2ME51/5OXDNfVAay6EJTxQjrqfUfa1Ww6OPPorLly/j8uXLZoOpHD7sIDwBicfjKBQKKBaLvhC6UW1dKpV8dl65IeRGiBbAYfcA7Jyera+vm0mP1kR+77QsTqcNWqUnmaykdV8KFlTkJ6HRaJgFFzcmo06Lw+CpOgd5LmK5+RrnHorF4i7BiE65fD5vqtjJxV+v1zNJ8ZnTBpgOpwyR9mDmhQF2Jh35Pi5eZb/iJtR1XbNZCp7gydANviaTXwfHAIoJdNZwcuOmw/N2qtbJhKsUBmUuqeApK38XXg/YcXNxM+h5Hubm5gDsnArxew4rueJecKkpT7SD4VfRaNRs3vv97SpErIICbLfT3NyccT3VajXTvnTXcCPC3C8sVy/DfihmDQYDM6bLUBmO2+xzrLjGxP0UHSk4XbhwAVtbW+ZUj/cK+Ctw8boATAW0zc1NX4WuWYSnm8GQXoZKAnsntrUsC9ls1nzuwM6iluOndDEC8PUtKS7yGuxTFINlWAHvWY4NvE95+ut5ngnB4vdRGGZfHQwGJi+ZXJyzSIRc7DNkM6xfypLt+11T3kikW0yGOQRJp9O7hCeKvGHInEzS0Rlk1PPCjQTdTxQVx4WCcCwWM2Mwx+5xNieNRgObm5vo9XomlJkuBI7tUgSlY46HiWz7o65sx8+BcyOdP+M6Y/gcU/SVgpEUBeXmUDqFOS/yNfle6Y7hBlqGrnNe5nwqHcac3+UBoAw74kaXcy1/b+meC+YVnIZ5dFKkILsf4Unm+QF2FzoZFWoXFJ749aDjia/Lgze55pLv9bxtJ/jGxsZUHYgeNnxu5cEVi58My/EkBUD2E3ngwrmPhyXSjS7nNtlHgR1Riu3KcF3+HFb4pDOS/YtjA0Nh2cZyTnXd7cTz8tCWUBSWjiseIsk1IdflvHYQPlPVanXfwtShCE90r3jedkjUJFXPCE+tGQNZLBaN20Y5fLgJ4eKqWq2iWCya0yuGEozahNdqNZPJXw6gHFC5WRomPEmbMhM7UxTp9/solUpmszWuGNDv941r6maA/WoSZO6OoFtm0nxazJnE68gF8rhQ+OEATFfMuGEJnU7HlPIGdhL8cqN15coVE9LETREAk0iXoXZ0h0yTE1M6SOiSAHbCbaRlO3hqKi38dCHx95eLUr5f5uriZlM62riIlqd1XATLSTsWi6FcLqNUKhmhg4IiFwb8WVwoy/4qw70YjsD38ecx1xWfGbnYlL/XUbclRTa5KSPcoNVqNRNi57qucZvw/YuLi8YJKN1Tc3NzJsyNCxv2l0wmYzYWTCjOzQcXa+Vy2fRTCpoUohgyzZwDX/EVX4FsNmtyAhaLRV9yd8uyUKlUTPgq74HX5PqBz0EwP9IsQTGX4gtJp9Nmk7lXjieG2smTbmDHlRZ0jgE7/ZThPvJZ5z3J/s7vZ3/nv+XmLHgyTwcE8wYymXytVkOtVjPOFdkfmfONYywFaBneSeGSB1oUM7nRm4aDJTn/DCuyEY1GsbS0tGtTa1mWObgIuy775qgKcqOeF1kZj6LYpMITBULOq9zYjDNG0v3IfE1c5/Fe+MxwcwjsOLXq9boZC+TrhwVlAul8kIcle4XFSiggSQFICrJBB5kUqWSoKT8D9iVeIyhe8Hnk5pYCsuxnXB8HDxItyzKOEHnoMxgMdoW+cg6XYdez6njiGmZS4Uk6R/l8yM9S/hn2c3kd+XUpQsnX6RSWbvKg64k5gSjs36xIEYZzZjQa3ZXjSTqe+F4KTgB8cyAAc7jCvgXszIlyPiCyr8owWulG5JhKEZcHQXQoAjtrXFaBb7VaxqQhBV8aBPi7yPxU/H25xkwmk6b/ysPLIDIX1H6fqUMRnnhCyVK7KysrEy8UOp2OWXw2Gg2srq7i0qVLN41AMG04jmOS8zLPTa1W8wk/QcVV4rqu2ZjKpMQAfHGnsrJN2D0A26dg165dQ7lcNiE33NwwVG8cAcLzPFPGnbbw485gMMDly5cn/h4urIOOp0ndPjLPDheaQSFhLxj6w4mZA7382ihc18Xa2pqxpDK0A9gWR5944gnfaUmr1TKhnKzA2Gw2fYvDaUCeuLB/0ekzLAG4XPQH//CUnguzYAlZadmXFbU4BvB7ZJic/B4ufuWpEvN18Q+/n8+HPFki/HlcCHIxz9Nix3GQyWRMBTYWIQB2whmmxbZOgY2ftQy1c92dEryZTAa33nqrEZ8Y2jQYDDA/P2+SODMJPhdd6XTauCC44OFJYDKZNBsICgh0LPA1biRzuRwWFhZMue5SqYR0Oo2TJ0/i1KlTOHPmDBYXF81CqFqtmoS1iUTC5Bth2DU3PQCMQMNwpGg0ak73jrp99gMXgEH3Si6XC3W2hUGhIrg54iKZ8y/7v3RpSAeRDLeTG0/2KSka8/ngNXkfwM4YwLGbDjq2E59JXlM6IqQowpLQXDtI5xfd8qyOBsCEbTEv31E+D/wdOI+FLdql01ASiUSGCk/SfRYMz5SEVcUj3FzQZSTDxcZBCk9MNC7n/r1oNpvY3NzEysoK1tbWzBzCE3hWPJTPnG3b5jWGik8ahn8j4WEU+wPHpGC4ziikmCMPsaQbjf+XripulGWxBSlwyAMv9hk59zGsiAIu1zJybODvQNdqNBr1JRGXm1Qp+spnQLoQ5QHTrMDfJ3jIMw7BkGVeTz4vkwpPwfcAfpcp+6AU6IGddYvcf8mDpZsN7knZtvw7LLl4MAQd2IkICI577Jcce2WOp+BcCewIifKgk3MysHN4wT4roxAoWvOAvt1um5/LNZIUxSlY8efI/ht0PFF4klEN8jmWyP34fvMnH5rwxAR3PGGd1GXBDWqr1TKbhpWVlZtaxT1KKDzR/cKNIE+o2HmGiUYMDWk0GmbhmUwmzWLacRwTzjHMXs1OUSwWUS6XjerLTVSr1TJC0jinLjJ/AgXO447jOFhdXZ3oe2SuBTnI7icHgwzXlLbPSSz1VPopfnCQnmSMYflmnjxwo7+ysmKEJ8dxfItuLpILhYJvczwtyBNaLhwpPElXhbRsAzsLHOl8Yv+Ui2UZ6iaFJy5u5aRNQUNO7PI13oMMzeM1KXI6joN0Oo10Ou0THYKnxNKNQfGl1+v5kkbS7cVwXCZI5T1Py2mtTNQadIaxmALdS5lMBgsLC+Y1Lh6Y66nf7xu3MTcOmUzGjJfc+HGeptgEbDua+Dmm02ksLS3BcRxf8YdsNusL5bFtG7lcDqlUyoT8RaNR1Go1U8VKnhim02kjPrDcvOu6JjHm3NycEdGAnYTHswYXgMF8PbS5j3PaHolEsLCw4Fs0c0ziH7nIlItfhkLKDS37I8cB/uHnS0FLOjRkX+bPkj+bri4+u3yNGwAKmDKH1MrKisn9w9x9lmUZhxs/F84ziUTCJCqXz/dRwbFomCOPfSFsU8uxOeyawE4Y6rCN/KhDDzmGygTj4yJDB3k4xD/jCE+DwXYSas7tpVLJXJfjBUO4LGsnHwmwPb9Xq1UTjnJUIUPyswN2xtBJQu24yZSigXRIhLWJdArLeZJ9Kij+SOShk0wTINuN30+hiv2M4XQAjPAnD3yCYWXA9vPtuq4vN2ulUjFVEKcdfqbXKzzJzT/gL7YRdDTxb9l+UhgItiu/JkWOoPDEn8824PVu1nA7HoQAO+2UTCZ9FSaB7XaSOdvoxuUamP1NtptlWcbxFBQaufaW7SjTOnANzn4m520+S5xXARjRmuOlzMHJAydGBvCQwLIs876gk0mKUTyQ4j0FRTMAPvFOhvlPyoELT/zgW62W75T0ypUrEynhFCBoOQN28j5MSrPZxNbW1k0hLBwEMqaU4s6XvvQlk7eDOYNGOVf6/b4poUyrKEuBU9Vtt9smf08YHATotuLiilV1GIZCp9xem0jeKweBWZgor5fBYDCxCAzA51KSjpdJN+o8FedkvZ9QO4qdfN44iE7SvwuFAtrtti/HSrfbxcbGBorFopl4pKDCRXCxWDTP/rQ5nmQeDik8SRFITqxhi1gulmQ1uuCGlZ8FJ0y6l4Cd0yLp5ghObJxMOUG7rmvEDlmNg9XY5MI9GDYirymdGNLNJhf6crPMhds0CE+yP6RSKTNOyoWGbduIx+OYm5szGwUZGgdst/X8/DyA7eecX5N5ZWQYhTwdZ64VuWmNx+OYn583z5f8jJizTYZfcLMt+4ZlWSgWiyYP26lTp/CkJz3JhLlSQNvc3DRJbbmgW1hYMK6nWV1IM+RJ9rOFhYVd4ajDoNgY3Byxn3CDLJ0tXDDKZKYUntnn5JghhQUmFpeLbjkGyIU5Dw/odmSepng8btrbdV1fYmZZMnp1ddXk7OPYTkcT5wrOP6lUyiQ35vN5lM/EXsIOD9fCNrXDHE/cUFCsHMaoQw+uoeRzMcnY5rquaTe6B4JhJ3t9P3N50snKOVaO71wH8t7i8bgJ6ZBFDI4C/s5y80aXwKTCk5xfZP/kZywdFdzUMum+/FlSGJabXsK24ZgSrAwp3bNSfObPjMfjPrckPwNuaIMiViqVMtWoK5UK1tfXTWQE015MM1IMvNGOJyLHXBJ0PEl3lHw+pFMuTHiSTm0pZHJsmYaQ5KMgGKLMeVA6CAH/nCbbTK7/ZYoXYCdHkxwH2Ce4NpXPgBwzpcDLeVS6KtmvOa9y/cpxnOkWeNjOMYTfy1xtMq8e4BdE5XwMwFdlLzi2y6IwvOZ2rd7JOHDhSU5O3W7XnFhSsBgHnp4uLy/j4sWLuHr1qrELT1pitdVq4eLFiyiVSrvKoCvjQSGRCSPPnz+Pxx9/HBcvXsTq6qpxGFF9DYOJbCkYRCIRnDhxAvPz877THJ6OBxdxXCjzGgw5oZWdz8zGxgZWVlbM9UbBTsUFPZ/Z44zjjM7xNGwDRIeRFCroYpuEwcCfKI8D+yQWzna7bcRFjjeJRMKEFY0Dq7Zw8I1Go+j1eqhWqyaXnNy4URxlWEmxWDQ5TLY5+gUWJ0qZuFUmF5cTrAy1kwsgXsPzdqpXcaHD0yCO78GNKSfi4GKOJ69ygQ34nVHA9uRGlxmvG4/HTfUc6b6QE6RcVPPrfK9MAskJnhsZWVJ2GsIEZChiMMwRgHGLJpNJLC0tmYUNcwXJ/Ct8vVqtot/vm8UFr8uwFv48in4Mn/Y8zyTY52aIbjJ+fhzvKajIZMmZTMZUPaXAwsMBCgkM18tkMsYJSUdzMpk0+b7S6bSp/jZJH58W2N+C+XFOnTpl+uO4jieZX4btQRGYAiDg7xNMFs8TTv5M9k9eQ4Y9yRAnuZDmeMDNFkUgVpSlSEGRUwpDzAUmRQceTHa7XV95dzpkEomECfkMugn4We7X/n8jYB8alospnU6HhtoBOznNgnBjwHXXMEZtlHnAx/ubNNQO2HGZSXFk3PGRwhPnDCleMXerzC/He2MeonK5bJ6Hw16TedhJzMt5Tgo5kzqeKCAFD3pkaKx0TXDe5R+5iZVzruwPcg0NwJcwGfALHVI8onuRjld5wFOpVLC8vGyEYDn28vfgvMM8YDwQlkL0NCOFnP3keJKHWsBu4UmOtfx/sP1GCU9yzJXuqqDwFGx7mXvrZoT7TcDvUgpWzbUsy9dX2J4UemTOQ8dxfK5h/i0PNSkkAdi1FpUh9QwZl4c9QQG63+8bp7I8OJD54gD4RCgZNivvgdFIm5ubJjcz14Iy31RwDuPzw/QI++VQhKdut4tEImHCVPgLjSs8DQYDFAoFrK6u4pFHHsHDDz+Mra0tkyNo3ITGg8EAX/ziF/H444/j4YcfxhNPPIHz588feTjFrOE4DvL5PCqViglFWl1dRalUQrFYRD6fR6vVMqfoYYsT5m9iOfBoNIqFhQXkcjlfvCtzewUHTF6z0+mYnEwczPn97XbbnL5QqByGDPlhfhNguiqU3Wg40I0SnmS+IwkFw6DwMGxiGzaJc5EircGO40w0Qfb7fVNhQVbImyTROZ8hCke0oNJpKScbuQCk2Gbbtin7PC3INqG1mJMLfwd58homPPFvLoDlQkhudMLCLuSEJ+3rnKSDC2w+R5zMmZNJToDcwDLRIl+XYwz7rLQW8x55kst2DH5e8t75PUeFtGnLRRD/X61WMRgMkMvlfAsomRCW95/NZk1uLD6ncuPEzRSdVZlMxriMKDLxwIgLLpmLB9ipdklnGkMigZ1KXhQhlpaWjGML2D4QikQiRhjlvN7r9TA3N4d0Om1ESAA4ceIEAJhwvVmC40bQuXH69GkA/n4zDLoX5Ymt3MTIdRb7FuHiVRYX4M+VrifpypJzuRSd6FQEdkQX/myGXnP8CZ7U0r1I9zTFiVKpZFx8Mjk5712Gs/V6PZMI33VdI3weFbKEdZiwk0qlhuYEWlpaGnpN9rNRbh86yEZdQ7o7J4XzYLDi4bhwDcZNDQVEriXo7OIzxeeJOV3l5vmwnTOWZRk3NZ93PtMUksa9DoVfAKFrKNlf2Uf5szgHcGMsQ3+kuCyFJ/n+MNeF3LTys2f/5HPKZ5rr8c3NTXz5y1/GtWvXfO4OuqHoZOfBBJ/LaY8ikELRpMJT0D0aFJQAv/AkBalRwpMULOTaU4qCYQdmUniSuXtmbb68EXBdIvsBC7JIpAtYCrhyTpWOJGDn8+VnH+xj0v0P7Ljo5UEsv18K+jxUlcITxw4ZEisr4knBiOtHKXDxvqrVKkqlkimqxN8N2BGeeBgtke8JusUm4cCFJy5eIpGIseEvLCwYl8I4ok+v10M+n8fy8jIqlQpqtZqpbsLEvuNw9epVXL582YTsra+vY3NzE4VCYeotoNNEr9dDqVSCbdtYWVlBoVAwC65Op4PNzU3jBOHiIQgnMZ4MMiRjfn7edCQucliZQcIOMRhsV0xkKWZWq6IbpdFooNFomHxUo34nYMelwYXBcRaeODCNcg3kcrlQMaVUKvkmWLbVsEX/sAWx67qmLDsny0lPYz3P84XrUSSaJNSOCZFleXdu0plXQw7C8jSCIupe4uZhw0mP468UEWUsN7ATuy0XXvJEVIYA8fMN5moKCk8UqqQAxGvIUDtO7nKSlQs/mbcrFoshlUr5LM3ctJTLZePKAXYW0cRxHJ9VmdeQCzgiLetHhRRg+ZkRz/PMhm1xcdG3CJBJYWW43eLiIvr9PiqVik/c4HWZuymXy6HVapl59fTp00bkoBuRIiY3GsBOHoVut4tcLmccLoC/ZLDrujh79qyZG7gO6PV6xg3SbrdNyDYFMrpsAZjS3f1+fybzPIblAKKYRuF1FJzrZD4KfrZ0Z8jTVrnY5fVlZSrAn4dEhgnIjWXYGCG/jz+LSbA5jsqNVFg4Jw8lefLLsOdEImFCdfjMNZtNXL16FQ899BDy+TySySQWFhaQSCRg2/a+Qr5vFGzXYcIO3Xphm9pRjidu4IeNR3LDFAbXZ9LxNCnSpbQf4WkwGJiDHB5Ic8ygSM45S4oovV4Py8vLRhznew4TbsSkwygej/vyII0D+58UCNgnKDxJdzXHfel6kkKEjCiR4hGwc7DIDS5/PpHOCH4vP19g+9CRoobrusjn86jX6ygWiygUCsY9W6vVzPzNtRKF4GCY0Sw4njg+7cfxxDFRroWCB3lcN8kxdC/HE9tEOp7k98q1jPw9gJ11GMd65oYMVlU9znBekIem8iCWyD4n+03wUEU6zdie8pmR72EfJHIMp3tcRgGw/8tQSY4/MiSPh8EyfxP/5jzN1AhSSKPTnM5Vumh5CMixJji+cw0A7OyT95vT9lCEJ+bc4Sk2K+nwxGovbNvG5uamyTVB2ycTlI6z8Gw2m7h27ZpvkVMul1Gv11Gr1SYuA38zY9u2yZ/EUEdZmajRaJjwJGD3KQcXozK/D23/VHS54OAAGRQRpEOGCcS5GKCDim4UlnYe9azJDiX/niYh4UYjTx2HwQ1kEIbmcCCnjXrY5zXMCcQ2CsZETwrFK3lCP8npGvOJSSGGYYBSyOCzJTeGFKiY2H7SBctBIR1PPOGRYoMUj4LuCLkYYhtz0pP2X2AndEievgL+NuekyAUQr8N+LH9WUBTjBMnTHZkolZu8RqNh/k93RPC00HVdIzwxLJc/Sz7HwHQ4nmRfCD5zfDYtyzIijITOIek4XVpaMoJVcJPS6XSQzWZx5513IpFIYHNz03xefG4oClUqFTOP07INwIyzrrudn4vCU3DhQ2fG/Py8zyUlXU/dbtdUNOTvads2isUibNs2oWYAzLpgVpCLWAnbbJzy7NyMyuSi0uHAfh+2+aGjVyYslkKzXLhKh4xciMrryYW6dG5wsUx3EhfKFKT6/b5JHM+1AMPm+ezzoLFWq5l7bTabKJVK6Ha7piIlxddodLtgwFE4K+Sp+LA5NZvN7qqkRBhCHIRj66j1MgWQYYIlD/DkfU4Kw1+l6DTJ+MgoByYL5+EjXe+VSgWFQsEcCDP8zrIss9Zk6N1RCU/yUIzC7SQuZ87DsiIs/w47eJPztJw3OT/KNpUHRHJzKl3GvG/Zx/lvKWbwPulAoxjM9AP1et0YAkqlknHCNptNM69yPGeINe+Ja8RgqPE0ID+H/QhPMv0A21CKRtJ1xq+NEp4Af/VC3pN8Xbq3hwlP8m9W/+afmwFZGZP9hykJJDISQIpPUhDn88E/XHvJsUD2a7aDFIRl+0nXpHQvSqGMfSdYSZpFWSj0AjuFAILOLIbBbm5umkIP/Cy4T3Zd1xxmyWcIgO/34O8ylcKTHEQ5wVy7dg3r6+tmkTpOPD5PstvtNnK5nO/ktlwum5CAUdRqNeNeAHYSA0q3gjIetm2j2WyaUw/XdXHixAksLCyYDrOysmIWN8FFDhdRsixyOp3G/Pw8IpGIOfmjMEJxUMJJtdfrYWtryzeJyZAgilb8ecOQg/RgMDBuumAC2OMEhZpRi/STJ0+GxvJS6JHX2m+pZzo3pHtlUng/HEx5ojouDOeVJ3OtVgv5fN7nHuDzLScsJmCuVqtG0JgGGO7CKhdyYyOdR8Bux1PwRE1+T9DuL10RcgMrHU9SVOKiTp4GyRMi6aQCdlxN8nSZIhh/Ry5sgZ2T+aBry3EcszmTseoyVl5WLALgW0AeNjKfgPzsgO32arVaiMfju6qbATt5nuQmMZVKmfA3hrnz2txgnDp1Ct1u15xmZ7NZMybOz88jFosZ4YrCEvM0dTod1Go1xONxnDp1yhcSwLblpoSCGRfN9XrdCIy5XA79/nbxiXK5bEqWz83NmWT+nueZHEeVSgVra2uH3j77xfO2c1rJRZ1lWSYB/LiOp2Cf5mcs81Hw6zJUlcmNaZeXTplgv2MflQnDpZgbDDPgz5N9kKKh7PcUaCg00fncaDSwtbWFdruN9fV1U0zGcRyT40smyGaBk3g8jsXFRSSTSfT7fWxtbR16v5Wf1bB5kM7BYcJTmHtG/r7D5mqGyQ5z3wSTeO9HuJEiMceUSYQDjhV87ik00iXJtRzn0tXVVeOK5zr/qIQnYKfYA+csHoRM6niSDoegu0E6noCdeUiKR1Ko4KFScN7m2M/PSW5YZaUu6Ubm/fHnseIkxS4+13RQ87Cg0+ng2rVrWF5eNgfRbEteq9PpmGee/b5UKmFra2uqDnfl57If4UnOdcMcTMHvmcTxFJZ7Uo5zUniSYz7/5jhKgvPQcYWH23LNy8q5ErahDMnjM8FxSh6+UBCmWMO1sezTwXB3eXDL7wnmQ+UYy+eQ47YUlfksSQFcJv6Xjilg+9lgf3Ucx3wmjrNdQXZjY8Oso8NCY4NCJoD/62KfvD0OVHjiABSPx1EsFrG8vGyqjLVarbHD5JgIHNh2YJw4ccJ8iCyHParzMJcEP1QuXumSYXjGUZ5uzxIMS8rn8+Zkc3Fx0XTkTqeDjY0N83mGCU8U/Pja6dOnzUkQT3HZAWu12q6k1fK1Wq3mi2WniAXAOLN4WjhsMcoJutvt4sKFC+ZEtVQqHduBmWF2owSaxcVFcxIvYfJIeeoihcQgo04GufjkYL2fRSXLaUvL+qTtJhdB3HyzLDCfZTq0pIjZ7/dRKBRw5cqVXeFmRwkXnrSOsxocsHP6JnNNyPEv7HeQIQLylI2TJb8mBST5filWcfHLz5uTsVz48v9sU7n4pmuAmzHa+xOJBPr9PtbX182BBBfj3Cgzd5R0YHARIE915LN9FPC5kzk+iEwsTuePhKFtwE5uFs/zzLhYqVQA7Lgf+Fnw5IyfOTfJg8HAiD+uu50jIJVKmbAqLsy4OTx9+rTvGeLnLR2tsrqa67rmQAPYXhRSTB4MBlhcXMSZM2cQjUZNwtpMJmPGJibInAXo7pHzIvNeyQXpXtCFJjczXCTTYRTc1PDaMsF4WJiGTKTKZ4EnsHJzJiv68BkC4AuBDN7TYDBALBYzcwU3sOVyGfl83uRlfPzxx9FoNExON4oTPDScn5834f08/T137pxvbXiYYzEPX0Yd5szPz4c6iIH/n70/6Y00y7JD0WV93/fs3Oke7h6RGZGRbVVJ1aRUJZUK0KCkGl1pVANp/iBAeBAeru4P0ECAoMmF8KZvUHgjQYJmV08a3FIpqy9lRmRWNO7hHVsjaS1p7RtYrW37OzQzmtGddNK5F+Bwd9JoZrTvO2fvs/baa0NUgi6YL7FdbhZolLvIS1FPm7xMTsM8WheHVlU8tdttzyRDGskzhmjSkhYOg8EAu7u7numy152TcZ/kfqQJpFWq/ox9VObr9akPqIzP3Pe1OpHf5/vSCinGTO6pLNjw+fl8zA20gpnXku+HilZdHOLhV99nw+EQr1+/xsuXL8UOJZVKCcHO68w1QV9WYGq1cFOgVSBvi3gC4Lmm8xRP7tf0v3VRHfAqnvTjZxFP/D1ITAyHQynmAHjvu33G47GcNTWpN0vxBMBDBOnrQ+LVJRW5n80iCjXxRLgKOJ136cdr0YPOr/l/KrP4u/j9fskr9PmZ9wGfm+sYgKxPCnlIFtNyRJPgjL0u8XQZXDnxxIPPwcEBdnZ2PBI/ym0XYTyeTK6p1+sYjyfTdqrVqlReX716hVartVC1Qb8h9id/+eWXeP36NXZ3d/Hy5UsxwLzp/cc3AWx/Oz4+xv7+vhyMuKnxhq/X67Jw3GSJiebu7q4soHK5jGAwKKMgWfVlYOJBieAiopINgBx2gQlh4vf7RTF1dHTk8Q7QGI/HqNfrePXqFV69eiWBkQefZU3wbxuGw8XG4gCwtrY282Drkr2sYs2rgEaj0XMTJPRz8fB72Wose7hJOF1GqXZ4eChBmIdbEk8aszwyWDGY5d3yrqCVD9r3B/AmIz7f+al2/KMJIF0F1CQSA62u5PAgqBMkHTgZaLVKigSZrhz5/X6PvJnBVrfC8lprTxgqITjtEJgGel3tIQkFwEM86c/oXRFPVChoXy5gmkidnZ0hHo/P9YZhaxyJOapq+DVOutKKOJJZVEgxrvIzqFQqACbrIxqNYjSatk2zNS4SiaBQKHgSY/4870G2YJBEINHEKXpU0QQCAcTjcSlyMM7s7OyIsmo8nrSBfPPNNzeG9F0ExlB9r8ViMfF4ctsq54HEk4ZWZbptO8BUOcFDsyai9Tpn0sp92TVW1gcd7TPFr3GN6UO1nrKnCcdutytFC/336ekpXrx4IYTncDjE4eGh/A5srdOFgVgshkwmI4T0tcXu8fRwoH9PFzRMn4V5ByHu4YtyVCqeFpmLa+LvMjGWJJ9rsrvKz/N9JBIJyRN5rXQVn3s3Ox3a7Ta++OILIT+vu5VSH9h4MOQ6WpV40j/D52I+y1jGvFg/nvGPfwNTpTIwJXi5b/I5deu6VkPxeyTSXPIqFot52mu1mpzPk0gkEAgEZPpvq9VCvV6Xnz08PBRC6sWLFxK7+FkAkBafdw2dx+ii3LLgZzyLeNKEoI6L8xRPmqi6SPHEx/M9AN5CIr9GRfdwOJTBDsBkre3t7WF3d/e97PzhGVIXQ30+n0wvd+Fee5fEcdcLizeuV5Mmk/Xa4nlC3w+MoVotxdfRrbFa8ai9wjgBmmddvab4N/cKTazxzEaV+atXrwBMDcb5uuRaeOYnLtvdcS3EE32Y6PtDiXS73b7Qn6Hb7WJ/fx9HR0cYDodIpVIoFApSHaTR+KJAxPewt7eHvb09CeB+vx97e3viSfQ+G0m/LdDomzc4gxfbMLi5UWlEebIGDztsmQgEAigUCrKwuCi4cPVYbYIBgsQTmVhW4CmBJjnFA80sUqDZbKLVauHly5f48ssvRSHFiSqU+L9vGAwGstHMQigUwgcffIByuXzue1Q8aTadh4VZ0JNcXJA00kz/qqB5PO8ZVyG3DA4PDyXwskXTVQIB3p57ol6v4/nz5+JxcxPACk2/P5kklkql5HtaeQRME2tNPgFTJRITIT19QxNPujLqKih0dVZXefg6rKby50lK1et1tNttTwBk4kBSS7/vUCjkuYdIipDAYS87iXMeYhng+T6Id0k8jTGVObO9hO+H7ZPj8fjcRDsNKtz0PRkIBOQ+ePnyJer1upA/4XBYfM445IGVMK73QqEgihImTu12GycnJ9jd3YXP50OxWJT3zQMQ1yaJJ02oUeXq9/txeHgo1z0ej6NcLgvxfXZ2hmg0iqOjI3z11Vf44osv0G63kcvl0G638eLFC/zVX/0VDg4OcHJyMney2LsGlSN6nyD55h5OFsHnm7Qr6sfz99UmqMA0+STZpH2GtDmqPnyRvHJbWfmcJLO1akrvHVT/cF277X9sb9ZT0ji45ODgAD6fT/KEfD6P8XgsQ0RoQs41S/W83z8xLSf5dJ3FRO5Fi7yYaII+C/wsXeiWpnk5aiwWWzjemnshDx+XiVGM8WytvczaYq6dzWbF+7XRaIhHEPc25nyHh4eilnn69KkUvA4ODiab5DVhNBp5lKPAdKT4qocv3TKuiy+6zYbxSu+R+pDM9cZDqo7TJJq0xwsPxJqUovJQ/47AdG921coUC7AoFwgEkEwmPW2cJBDr9bq04JEYrtfrni4XPbjmJhT9dfHMVXUtA00IasIO8OY+sxRPfH39NbewB3gVTXwMCXz+LAs9OkcDvMQTff58Pp8IQIbDoRTo3yeQb+B15d5F0tQFixqa5OV6cYle5sSELrLydXhf6Z8bj8eeIR+MZ/rxerCM/h7vAV53TSxTlcQBDn6/X64n9xbdlsdCY6lUEvFAt9v17CEUYuh9wFXYrYorJZ548Dk4OMDz58/lzXPjarVa0iY1D0xoqYQJh8MoFAqoVCqikGEv+KL3wQA2Go2QzWaxvr4u1YV6vY7Dw8NLecvcNTDxIDvOw08+n5fkkBXoZrMpB18NJjCUwodCIY+/AZljYLppcMIRwUSq2WzK++CGy0MSD7fHx8cynnvWpkrjSlZej4+PpYLIA8xNHwO7Kpj4P336dO5jYrEYfvjDH2J9ff3c93QSCyyWTPMwMK8yyGlwrK4vWofzNjqqHklgsDV3FRwdHUllhPsS1SLue3C/1ul0RG5+E5IoYOqxR2IlmUzK93SlheuGyZJeZ1oJwUSYj3EDoq4W6qSJQVYn7fSP4P+1qikcDkuM0NOxdELIyXa6JYjVW2Ci9uFj9DQoBlW+V61OmEc8vRMicQyJT6xm8f3Qry4YDCKTycxNkEk8UanAz7darWI0GoksezAYIJfLydcGgwFSqRQymYwMjDg8PMT+/r5Mpt3f38fOzo5MNXr+/DmazSai0SiKxaIMnCB5RdN9ElxaKcu2uXQ6jeFwiK+//hr7+/sIBoMoFAooFosol8vynrLZLEajEV69eoXxeNI+uLGxAZ/Ph93dXezt7UlRi+bTN4mA4oFbv6dEIiH747Ktdn6/X4gngmtRqzK13J57F6+DrgDz+wTX53g8FvLSJRy0ilIfrPhY3qvhcFjULjqhPTk5kddsNBpiVsxCJc2M6UvFNUG1XDAYlOLjycmJ+PSxBfWyifFlwHyXBIWLSCSCVCo1l6ig8bgLkjGL7CBI3s4jtbjX8fBxGVUuczFNSK6KRqOBZrMpxQVOzyQxrSfd0Y6BBvMvXrzA/v7+3M/3KqFVhFwDXEOr3mNsiSRxoAkPxjruj1rlC3hJYmB6mNSqJD6e71Wvb6qFdaGHr8eDpX4tYLKueV0YY+m5mkgkRAFFYovXlY/tdrty379+/VrydQ6uAG4O8eQqMleBVoS77VWXIZ5cRRTgbbXTxJJeD26hjuD10PdEOBwWopzv631rvaPQRBdGw+Gwx3pCg9fejYXugA1+vlxTunjDPzqv5uerfURJ8OjijS786HtFK6iA6VAfejqRYGZ85R6vVZX6PmIMjkajyGazkn8cHh7K87CITyUyf8fLFPY9n/Eb/fQCDIdDSfhfvHiBg4MDhEIh5HI5xGIxqWqwZWAeaDTIw1Mmk0EkEhHvmdFoJBMwZoEBklLQ8XiMWq2GZDKJQqGAfr+Pw8ND8Z26SQnqTQTl6yTqfD4fSqUSPvzwQxSLRTlUDAYDYc9d9p/BiD45weBkRDrbsfhvLha2SuqbnV+noTOJJh5KuaiZNDPBcaWk9Ow5OztDJpNBLBaTTYqVIVbk3icwwD579mzuYyqVCj766CNsb2+f+x6rXFrGOW8N+nyTCSmzvKKASaBj1XuWQo6gj8UsuIn5ZYinZrOJ/f19+V1ImrpJrns/AxBfs6dPn96IwM3PkQlmKBTyKJ50QquTT/03Ay8TZG0krJMaBslZxJObzPL7OiEiOaIlzPp9MOBrvwvXnFUnaFRN8jH0hmEFiB5wOsDz99WVqXfdakcCVitAfT6fJAE8yM4DfRwolR6NJp5NVA1TNRaPxz1tkWxpS6VS2NjY8IzV9vv9Qvxw32w2m1IAIDlEA34eLGguTbNyvkYoFJJq68bGBkKhEFqtFl68eCG+bSQ9UqkUisUiPvnkExQKBVFRFotFfPjhh3jy5AnS6bSQi9y/j4+PhYy6CWpEHqj1wT2bzXrWzbLEUzwe97Tm6bXExFMnvfxctAKVr6kPMPoQzBzKbbNjG6R+bias/HnmgDzc8IDLHIAkg9/vl/+T+Kc1Qq/Xw/7+vniKsVWESiC+Dr+nY/Uste5VgZ87J365uIgojkajM9tmWcibpb4lQqGQrK150Aeny+S5POQsml57EaggZ/zQPm48E2gTXxI+JycnUtjRFffrAtvg+HuPx2OZ7LkqQcH1p+Mui26a3OI+4HYBzFIa68Mu82Dmuq7iGJhOvGWOzKKLjn1cx4w5JCw4lZwHY8YiV82oCbZsNgsA0gY0GAw8+dxNIZ54X2qyblnovMZdY/p6zoIml2YRT25Owvc6i3jShTXXi0vfO/q1BoMBCoUCgGmL//sCPTlTK/3nTRHl9XeVwIyBuugKQMh+7lvA9HoyP+X+pout+h4j6cPcgPsNMHtSIXNVkmrMbXnfsIDPdc3XZaxlizqLUHq9Hx0deQis/f19zxAIKpHfBFdGPHEDPTs7w+vXr1Gv1xEOh6UKxQM925rmgaQQE2Ru2LFYDNlsVhRL8/xlWKWhhGw0GqFarWJzc1P6GikxbDQaN8af5SaCh439/X3s7e2JZPP+/fu4d+8etre3RTLIZFEnrwQ9LkgkcRoLpY9UP+mDZb/f9/g1jEYTbwhKd7mY8/k8yuWy9MVrdRWr9Rp62l0sFhOT8/F4LETY4eHhOcXVbQevx+vXr+c+5sGDByiXy3jw4MG57/Fz04qVeeQcJenzTFW5cV7k30Dl1Lzn0OqY4+Pjub/XPHQ6HTx9+lT2LZKSyx5W2Sc/8aNb+eXfKnhY5P4WCAQ8Xl0MqHqaBh+rZdyzFE+EDr6aAGICplUUuo1H/yz/z6RXq8kYDAOBgCgdmFRrYoHm4EyYeBjo9XoSLzi9xe/3yz5D0uTFixc4Pj72tB3y9fX/rxtaas33xkS/3W7PNRYnuJfqqjhVb6lUSoZ0UJHE9iuuMSooSFRVq1XUajVsb2+jUqkgl8vJ65BICgaDyOfz8t5JNuv2ilAoJD5OJJ5YOFhbWwMwSX6j0Sj8fr8oWl6+fIlGo4FoNIqNjQ2Ew2EcHBxI+1WtVkMul4PP58Ph4SEymQzS6bTcJ1RP09D4XYGTZ/R9VSqVZO0s22pHEtV9vPai4BrTlU5NPnGd6wqvJn75fFoZyL95vTVZpp+H9xzzBlfhqCupfBxJcirW2EJJok4fknd2drC7uysqKSbt4/FYCKnrVjzRn2qWGigejyObzc4lnkhkzMJF5uJstVvkN8QC3Tyvy4vA+9advLYKaBzP1jqSJoy1s94fD0x7e3tihTAajYDVeIE3Aq8tP38WYuapJhaBRREq8rXiiYdVvZ71mtXkhVZUAFOyQ/tH6XY6rk0SE/w5rifm23wMYzGvz3g8aU9KJpMYjUaSpzHe60mxvEfoo0Ori263i8PDQ8kV9Ht910UB5hLLEv+zwJ/j5wWcJ5Jm7e2rEk98PN/rLMUTiUJiMBhILuEWEYDpfbkoB7+NYJuy/kyDweDcQjjXti6YAvAUcrU6jQNqNKnLv3X8owhCK550jsx/M9fVxQtNNBPcJ4bDoWc/0T/HPaDX64nlDPMlPo7vj0U6PQGQ3AiLlqFQSIo88jqX2IevLCrzje3v7+Ply5dShQSmh8S9vT1RrMzCeDwWDyaqJrjBsZo6Gk3Np2cFZVZMmfhQUbO2tibVtna7LVNx3rf+1rcJVhZpEs+qz5MnT1Cr1VCr1aSCQYk8F4q+yVkVZODjQYfmwJpg5MKhggqYJsanp6fY29vz9LDycMUpezpJdVVTwNR0U7Pg6XQajUZDEiFOt3ufVE8MjIs8nn7lV34F4XBYDoPuz+uxnYPBYK78ksqLeW0AWgrLJHMWeH1mgeuYAdn1BFsGvV4Pz549EyUHTc+XTYgODg7w05/+FPv7+yu/9tsGVQaasHEVT/qQyzWlWwncQKqJJ11N0wdVLVUnoaUDOZ9L/58VN01Ocz0y4SahqL/OhIuEEvcYHt5ovk3iiUk1TbP5uXAAAdc338e7Jp54GODvy7VG3yoaKc8Dq9Pa+4qVZ14TqoF7vR4SiYSQUVQnaXm+VpGVSiVpsQ4EAjg8PES/3xe1Kq8VrwWJJ7aUMWliVY1Vf8aPeDyOWq2GYrEIv98vE8+++OIL/PSnP0W/30c8HsfZ2Rnq9Trq9TqCwSA2NzelfeCrr75COBwWnyiqunj4ef36Nfb29iZJ4dVeSg+4t2hUKhW5P5dt8/D5Jgap+nChSUZeA50ks73OJY34OK59vZ55bQCvv10g4DUp1+QTH8s4w2KTbndg0YgHUL4mc4tWqyXTkF+9eoV6vS6fUavVkiECfr9frBv8fr/48123dQIVW/w9XcRiMeRyuYWKp3mFFRI+8wqjPBQsIp604umyexrjyZv8/NOnT2W/0GoAngO0ypj35Wg08fz7xS9+gefPn1/a1PayIJlIxQDbY0iOrwLt8aRVEVpl6KozWIglkaRVTNyfNdnAeMgDI6HXmr6XtNJXE1QkIXS+QDKfbe68nyk2iMfjQv5mMhlp1U4mk2g2m57pwbqN8F1bnWg1y2XvLz30ROeNuii3iHhy1WlayQ2cVzwxL3CJJ30PEVo1rtcv76+zszOJ1++TyXij0fBMPqWoYN5ZQncCcC24qlr9udLnTU+r1Gtar3FgSvbpoRz631zTPNfqe8AlpbV6UpOGvH9Iph4cHMj155mX94j2QB0MBtjb2xM+5PDwEKenpwgGgxK7+P5FUXmJa3KliqfT01N89tlnMnmu0Wjg888/F2NSGoezX9hFr9cTCf9oNEIsFkMymUQ0GkUymUQmkxFJ2v7+/sygzAOxJqZCoRBev34t8v92u42dnR2PubDhPGiKys9uPJ74O92/fx+JRAKFQkEOK2RK+Xnq6Ui9Xk+uB8krsvTBYNBjmKsZW6pYGDRPT0/FnJRKBi4gHrRDoRDOzs5wcHAgCSkxGo2kQslgTSaYhCYrr/Q4eV/AJMGdFqjxox/9CIFAYCbxpKWg3MDmtZixGjuPeOJGyKRrHhEdCoU8PkUavF4M+Jdtd3v69Cn29vbkvlhlPzg7O8Nf/uVf4uc//zmu1fl0Blg55h4Xi8XOVdO5ThhMtBcMg6s+AFAhRTA464SZ/2dVlT/rtvLwZ/XXST4xCI9GIzlM6eoRky0d5IGpXD8WiwmBSfKZMmf+vqenpwiHw8jlckgkEnLw0UoUJgLvinhiEqyTCt6XbLOalzwRgcBkcANJKj7+7OxM9ksm2vF4HOvr68hkMigWix5VmVs9jUQiSCQSSCQS6HQ6YlKezWbl84pEIqKq4ZpmUYH3Ct+jOy2LwyH487lcDplMRtr0qLptt9t49eoVjo6OsL+/j0gkgkePHgn59OWXX0qsoUo6kUh4Wgwajca1LlcO6NCgjx4T2GUVT65nEBNUfo4uyaCJIqqTtfEwY6DrEaG97hhj6RWjJxDyfTHBZ+zmwZ0FSJLBrEYzua/X6zg5OcGrV69kUuKrV6/wx3/8x/jjP/5jGdfebDaxu7uLUCiETCaDZDIpCmySVvMIoKsC2wrnFWDS6fRCxdOiKrxuW5wFmtMvSzzNa6WZdzAm9OHrMu04o9HEm+2v/uqvhGgggaEVcVoJy9frdrv44osv8LOf/Wyifr/GNct8l2cIHtYvo3ia1Wqn1cb6s9Xtqy504QWYFio0OQFA1iJjp1tQYXGB153PoQ+Y3JdI+IfDYckx9HvrdrsSV87OzoQw6/V6SKfTCIfD2N3d9SjSmRe+66I/P3s3z1kF/DnufcB5n0x3fbnkEn9+GcUTiZFliSdeR157ejGyAKc9ty6zvm8iXP9mEkSLFE86lvEP91+9fzIPnXVNeXbVa9Rd25rQ1cVYPcFU50maIAam9xvbVnWuxTM1B30BkG4eno/08B1+7+joSCxYaHVEwU4wGEQkEvEMFLgMrox4Iqn0zTff4ODgANFoFOvr6+c22Xq9PvdAzyoW1RCJRALr6+tIpVLi08SWiZcvX85kzPnBcgxgPp9Hu90WFQYVVKenp3j+/PlK5AJ/l7sCEjivX7+W/tFsNotisYjhcCgmZVwgnFwITKsZJCy0qXwsFpNFQ1KRlSQSVWyLAaaEEf0CAEiLBw+qPFTS3Pbw8FAOKFy42sOHSTfNoY+Pj/H69WucnZ0hFArh66+/9hBptx1sQZ1H0ITDYXz44YcAJu2LsyqxNIfnOpj3XNy05iXcTKopZZ1X+aIX2DywIk5PsMvgq6++wldffYXd3V1pz10Fr169wp/8yZ+886BNIo+mznqCDDANZrp/nNdRBzY3aXJb7Qi3Ss2f42u4JI5utfP5fOf655nY8rE8mGoChIblem+hMhaA+GZQ+k+ySbewFQoFj0JHK5/m+TVcB8YYeyp0fC/0qwuHw0in0xcSFDxo8FCqx/YOBgOk02nkcjkUi0WJp9ro2iWe+DfVqTQgbzabUhji50sfHo5FPzk5EQ8X3mtMAjmFpdFoyDqn4plxYXt7Gx9//DHu378vRCoJRY7t/vnPf45er4cPPvgA4XBYYj+nZ3GCDw90VF9dJ2a1fJN40gqAi+ASTy4JrCuu+rn5e7stOG6Fnc/BteMqXXQ7ApNvnRxzLfM9kQzSxBgTc6qXSCqyLbLdbuPw8BDPnj3DX/3VX+Hzzz/HL37xC/zpn/4pPvvsM+zt7QnRzJySHjQX2Ti8bWgibRboIbmo1e4ixdM8ML4uune0Mfg8XKS243q7LPEEAPv7+/izP/sz/PznPxclqj7UuQpjTdAcHBzgiy++wH/9r/8V42tknrgGuKZ4WL+Mubhb8OGa0mtWKwh52OPnoFUuLkEMTIs6WsHEda3XvVZh6HY9xnnGZeZAbJHm3su8jaqqQCCAdrvtWY8+nw/xeFwKyhxi8eWXX8prMtbcBMUTvXLmrdGL4F4brhFNJM1TPOlizDzFk/bK1Ko4l3ji5+96PDEf0KpYTTy9j+12R0dHcl25fhYpnnQBRsc014qCuRALL7pACEwVdHpNcx/jYwn+n9eb+Tv3WV5fd4/QuTCLcjxbc2+itYDf7xflN+91ii7o8wlAOsAikYgoeBnfOQCD4ozLnoevRK/KitOzZ8/wzTffYDweY319Hb/2a7+GL7/8UqSbgUAAx8fHolZygybHOPPwRLPT09NTpNNppNNpxONxmbLW6XTEd4IgeXV0dAS/349qtYpYLCb99ru7u3IR6vU6vvrqKzx48GCuOoNgKxbgrRAwyZ9nXHab0e12RRnGtoj79+9LxfHw8NCjMmKiCXiJJ5qCU/qXSqVkAhUPybFYTDZDTTxxQ6XaiZUojoRMp9MApm0AiURCJqlwTPPp6Sni8bjHV4iHTioKOPaXTHcmk8GLFy+Qy+Vmeh7dJjDxr9frc9vaisUi8vk8AMj1cAMRzXq5mc7bhJiozEuqSYJx0sK8BOQiM2VuuLpaMAuafHBBg3AeIlYllpvNJn7yk59gNHq3xJM23fX5fEin054EWSe1TFTcqrOupPFndeKjq226kq6Dtf4ZKim0ypHPw0BGlRPvBa5tVpBcxRO/xtcPh8Oeg9FgMJCDKPcsBlsm9EwcgMna4Ph2nQhQjXltGEN+d6pKfD6fKIDj8fjCNjuC11cfMiKRCLrdrrSfx+NxId9c6FY7Vkr5dygUQrFYlIp2o9GQVim9rzabTc8oeO6vu7u7ACCtjsFgUKYZsphxdHSEUqmEfD4v9wCLWCcnJ/L8rVYLwWBQ9vlcLodkMilEF9vM+PMzydW3cd2WgGsLEIlEsLa2tlDdMAt+v//cfcp7nutHE8BukqxVjPowwuRZt/DMIqS5hrmOuIY1ycz1R48i3RZLby/6i/HgpQls+j/V63UMBgMxsieJSe+YVCoFn8+H9fV1RCIRtFotHB4een7/qwaT9Hkt+ZzIOO/6XtRKvogw4mRgrRad9xyLiFaS+fMeo/24Zr3GMuh0Ovj666/RarWEhNVDaHTM0cQ3W/IODw/xxRdfYPTo+nyeeP/yAMeJdosKavNAtapWs2gylr8v1yivKVUojK9cK1z3ulCjTcq5nvlvTQ7zs+YhmTFdH6D5OzO2sjihjeE5pZACgb29PVE5sd2u3W7j3r17+Oqrr3B0dISvv/5aCgTAuyeemEfw+l4GmuTj58+i2SI1Ia+PJp4Ab6spn1+/Xz5+luLJfbxuEeN1A6YKcd57sVhM8ox5nnO3CfT/Y4wLBAILhzxw3+FnxT2IijDmoFr5C0yLufxbKxg1WcT1rdvrdMGJ10bntHptaPJbE4+870gcMT9mqyEn1/HreqhWpVJBs9mUfJMem8BUoAFM7hW959wo4qnf7+Ply5d48eIFXr9+jWg0ih/96EfY2trCYDCQCSUAPG1wbmLPSXPsI87n8yJt9fl8ciCmYeHJyYln9DsPw8+fPxdJYbFYlI3y/v37+Oqrr+Q1nj17hvv37+Ov//qvsb6+fu6wRrRaLY+cWssqSWI1Gg1J6PWoxNsKJn3sz2cV+pd/+ZdRKpVkuk4mk5EDgiaLeOMOh0NZGMBkkeZyOSEU2BZEWR9bX1qtlkxUoeJpb29PbvxgMChkJBPh4XCIXC4nxObh4SGazSZ2dnbw4MEDOYwCELNbtoSSsGw0Gmg0GgiFQkK4VSqVuTLN2wD+zl9//fXcx3z44YcSdEhcuG15PGhyo1ykeGKiNgv82UQi4SE+XNCAfh6YCJGsnIdFiWK9XsezZ88Qj8cvPWxgf38f4/EIwOWqZm8DJOypTJzlLaITWK5ZBkUt4ya07FgnsVzf/Dofqw+QfB2qkDTRw6/zsUxyeZCljJjBmPs/D0mszALTa0uSge03BIO53z/xemKi3Gg0JJDT94jtZkzIrttXZDweizk4DxMk7PP5/FLEk1vhBCbqiG63K62pVKzMWnf6azywsCDAqjcnBJLMZtzjdWdLYDKZRLFYxMnJiRyCY7EYOp0Ojo+PkU6nZU8Ph8PY2dmR9awnX1LRykmZ3Jf9/ulktHq9jmg0KsQGMDmcp9Np+TneU/1+H+ebia8GY0A8tYh4PC7r8yLFiQYrmO66ptG7rrwCk7VFA3ntk+YeiLgXEIOB11ycj+HruuoxXZXt9XqiXmOeRYUz1y3vKU4pjkajKBQKHu8ftkT2+31PgYgJMgk4quubzSYCgQA+//xzjP72rwD+q82/xhhfqLLK5XJSGJsFEhKz0Ol05hZu6O/EGMvKtwut8J4H7qnzCi5u1f8yGA6HMnWWh5/x+Ly3Iw9d+r3Qb/P169cYj+PXRjxpc3EeGhd5ci0CSVvuo1wvWgXIx3GdaaJJKx0Ym3SbWDgclsEvjKeaeOL+onMbrm39GJ0bk7Tm9c9kMqJQZAxmbObhmiR/OByWAVO5XA6VSgWtVgtPnz6Vtm5N1rwrsGi5KFe9CLw2zIn03npRqx3/DSxutdOflVas6/dAVY1LPDEu6G4dPRCKcZ2EsNuud9vAnKTT6XhU3Llcbm4+x3jGa8FzKO91Xl9+vjxrapUiX1sTvPpa6nXNnFu/H76WVswBXnKU65pdXxwuwdjI+7jfn0wFZT4bjUbFMoexlWomfkaj0WRAE9c1f4dkMolutyuvMxwOL9U2dyWZ9OHhIfb29vDzn/9cDv+/+Zu/iVAohGw2i1qthtevX0tSWa/X0Wq1POxqv9+X3kT2FZfLZZFs0sg0nU5jf38f9XpdzKz1pnxyciLT0Og/0e/3pc2iUqng5cuXaLVaOD4+xosXL1AqldDr9ZDJZJDL5TxT1lidBSCKK278TKTa7banlYk3Jyf63FyMMS+S02/rq6++kpa3bDaL73znO4hEIshmswiHwyiVSp7PihVJJhUkkSaTvyYBnIoYXZFnawgDKgPpyckJEomETNfTRvO8H/x+v/S0cvFRpt3pdPD69Wtsb2+LTxQPvp1OBy9fvkS9XheFAaXGR0dHqNfr2Nvbw4sXL/Bbv/VbMgGPr+G25vBvJvk3BbwWf/7nfz73Mb/5m78pwdfvn4xQZ98vQV8XfY1mgddXB00NsvS6CjMLF7Xa8UCiGfpZoKfPLJydneHnP/85tra2PCaYszCvmj45eFxPlX08hijzePhgqyH3oWAwKNNE9XvXiicAnqRX/146CdIJsA6y7mHErbozkJNY5Hrg1zSppFtGWIHj47leGXSZDGsjRmBapeL+wJ/hIZrtYqPRSEhGJso0Jm632+dIm+uEVulQ5ck1lk6nl6pGklzQKgZWc3mtLyLR9fsgSQBM7gvu9/RcJMlUrVYlkeGhmebKNAwHIK0Xo9FI2rDYksT93ufzYXd3V+IOSQ7tvcCDLP0BuRfoNksAMkyB/lFUiXx7HACuozg0Hp/znGCOoYndZeD3T4x+SSZNnn5qMsz/awJYK5wA78REPifgbS+lMlg/L4lbruVoNCoqJq1U4XqnoT9zOV3VZbGpUCiICWqn00GlUpHrzEMhJ5pxTXS7XfzFX/yFEAHcK5hzJJNJjP/WL+E6igDMZWeRPoFAAJVK5UKiYp6HIfe9WfD5fNI6oq+tCypaL1I8LYp5nFZ20fNcBNo2cNroPBLLfS9UQf71X/81EuPv4LqYJ7Yp6nZudjasCu6nutWOB383hmoFEq+/Ji+02teNyfqAquMXYwLzQH5fK5T1tDmel0jkDwYDlMtl7O7uSqsdf4dwOCy+klrN3O128ezZMxEZ+Hw+j5cMyZLrtC4ZY3JW1abQHLJxWcUTP39NBLqkvquMAZY3F3cVVcyDZil4NWmkFTd8fu5TPOtwz2RrJHOl26x6YneN9hubV7AhXAJpFsnL68v4qa+XLuS63QBc78D0c9dEFO8dFtL4XJrw4ve4Rrk+k8mk+H9SaMO/KQrgPqLb/SORCPb29rCxsSEEM7mZs7MzUbh3u10Z2sVYHI1GsTr1fgXEEwPKs2fP8OLFCwQCAXz88ccol8vo9/soFovY2NjA559/DmCysR0fH+P4+BilUkmeh5sVE41IJIJCoSBKp2aziWg0KlVfVjkppQMmrWGNRgMnJydiNs1+xXg8jlQqha2tLRwcHMgY9UajIVJ9Tt5g21coFJKbmEZ7u7u7nmp7KpVCLpfzVPhGo5G07ugb1e/3S/VPKwB0wODXrtCOS8DYr71RuBFyGsnTp09FHbS9vS0HD27WhUJBEmEagrM1hIu1Xq/LIYM/SxkvFzw3PyadNDI7OTmRccuHh4ey+Nkyw4kbnJbIKi9bO6h62t/flwMrD6jPnz/Hy5cv8fr1aySTSRkdy/aPfr+Pb775Bp999hn+7M/+DI8fP5ZDVy6X84xDpuKELTGsdPLeY8IyHq/hWucCY6p4WkQ8/fZv/7ZHBlosFs89ptlsyjUlUTwL+kDAg7wLtv0sOuBfNC6a1XGy+POQTCZFcTcLz549QzAYxKtXrxYqp66rhWMRxuMxvv76aw+Rc3p6Kp46JPRZ7SB0gGTyolvtdBKk29vc55iX+DBYAlPVjW7b0gmUrvZqvxitvuLUFV5bXXUC4HlevibJGlaB+TtQDUHFE9ujuU8nEgmRKOsEfPJ5X99qZQzg+97f3xcVwDLG4sA00dCtdn7/ZBADW91SqZQoU13ws2bywXsBmJKC+XwelUoFpVIJ9+7dw/b2tofM4FrkteHhmx4p2WwWg8EAz58/RzQaxcbGBiqVCjqdDtbW1sQfiNeQbb9UHlP9xHhBxQbjVDKZRDqdFuKOZuj6wPsPvvXp9RBPgMQt4t69e/Leea2Xgc4fCK6neW2TXF9UuLnkM5+DeQj3d508A1NTVX0w1m27eu9ot9vIZrNyH/KwypjOZJdDZ2h7wGk6jO9a9cxDQCAQEEJyOBwiEokgGAyKZ5Acuq+68DOeKF3pp+GCUxovUk3OI570VGgX2ojf3aM1tG/IPFDxNA/87C8i4rn/zgNz5ouIhllxvN/v4/Xr13g4+gS+wPWQxXokOzAh6zOZzKWUMSSutNpBdwVoogGAxC9X8aSVUjzQch1qooGP1YdbHV91QYiFBV0Qouo4EAjIoCfms7wPmLtHo1E55PI8lU6n0W63Ua/XsbW1Jet2f38fp6enMsWScWk8+hau47yDsbeFkvsPP+/LQCtRdIs84apLPW9nDvHkKk01UTgv/wKmdgj8NzBVTHEfBqb+QJqMuO3tdiSI9/b2cHJyItYAVMDznDgLWlGoiUNtH8BrQgJItz3qczvjlF7nfA5N8PL+17FXE9N8jCYUtTqV3IOeFsr8ut1uo9Vq4cWLFzJVkvYzXMeMt/V6HUdHRwgGg3JOz+Vywgkw5+DE736/j8glcuK3Sjydnp4Ki/2//tf/QrPZRD6fx49//GPZVEulEo6Pjz2jmk9OTnB4eIhHjx7Jc7FdrdVqyUbHoMzDO1vtKDVjSx0TMXrYdDodT/vVaDRCsVgU9dXGxga63S6Oj49xcnLiYXxfv34tbSR+v18S9FKphKOjIzEg5s3EyhsXs65UM8niY5lIk11kAsGEnFODhsMhRtFfBnxXuxmPMcazZ9/IwqMqLBgMYmdnBz/5yU/EEysWi+H73/++KJao+mG1mmohtkvmcjlZgDs7O0IKUaWhD7asgHLjpeqI7X6pVAonJydCfLD6yvfLCUlUmiUSCbTbbZyenkoLaK1Wk82F7/MXv/gFvvnmG6m+8GDDDZqBf2dnBy9fvsRPfvITkWxS7s7Ng4chrcDgwmUrSqFQwCj6/8JVV2NHoxH+8A//EMlkEj7fxMsqk8kI+esiFArh3r178n+fzyd+Txr8/ElazCNp9FQ7yjxdcCNbRPRoP55ZSS3lsIueg+trEY6OjvD8+fO50zZvEiiRZQDShuLdbhftdluIARf60Ah4WzEYuHTFbRZZxb+BaXKjySB9/5OM5j6oEygGVB5C+bq8zloloSfpUNHC982v6wSOhGgikZC4wiEITII5iYefA0dCt1qtd2JADYyRSCSlFZCxaDAYoFgsLpwSqaHl3Pp3IKnOmNNsNiWh0gkZP2vdRsX7RZOUbJGiKllDE14AJO5RrcbWP8rDI5EIXr58KUqZYDCIQqGAVCqFdDqNXq+HV69eCQEXCATwwQcfiK+PnlZLqT3v9VAo5PEWYoy+LozHY1FgEx988IFnLa6ieGL81Wt1nnKRrxGLxYTI5XXg9/TBRiue9CEU8LbaARBFE4trTNJHo8mUUsY/xgoOk2AexPdLJSIJJhKN9IDiY1jQA6aGq3wtt7IcGV+9f9doPMLe3h5evnw5kyxJp9OoVqsXxp55iihW7GdBt7MuMrtm6/VFxNNFhBGv7SLwes8jqBZ976ZhDEhrMkkJFq4v036tc39gqhZm/NMt4jygasNwNwZrUph7CO9/V5XMuOuSF2yboYpYk1daucNrxnMXi0VUFnMtUz3TarVEXcJ8n/coc/Tnz58jEAig1WpN3j8+emvXbvF1mHRt6LZdnhku26HAz5Z5irufzyOeZime9GfuqmmASfzlvuj+PN+LS5Ro4ol7ii72MY+c1W43Go3k/1rNyvekC4zAdF8Gpgby14MxXr16Bb/fjz/6oz9CvV6X+x6Y7LFa5OKC51+uARY/GAcZZ/l769Zmrjfuf7p4owutADzvaTyetrhS8aRJS+bMOs8NhUIS77T1AFsLy+WyFNoo2NFFSE6N3dzclPblg4MD7OzsYHd3Fy9evBARzmAwQCqVwunpKSqVijyu2WziV0vjlWt2lyKeRqMR/u//+38AmCSRqVQK8XhcWqj++3//73jx4gX8fj8ePnyIx48fA4BI2+lPwaobFSga/FDYqkazUGASHDlBhx94v9/HixcvPEGf7B8TGPZU5/N5JBIJpFIp5PN5USmxZ3l3dxdbW1vyHkkuPX/+XKY2HBwcCCPYarXkdVgR0swl/00JnGakSciRpGBFX1cWw+Ewvv+//3/hD14t8TQcDPGv/tW/QqFQEFb44cOH+PTTT/Hnf/7n+OlPfypsaLFYxK/8yq/I++ONTZKBFZOjoyNZHKxCHxwcyO9NbwdNNgGQVjsGKCar9M6iySirMRzTzVYZfo2fLccts13u6dOn8Pv9aLVaePXqFX72s5+J6aH+OZJYXPg8+ND/hwbb3GD4WG4yejPh9eTv6PP58J3/x/8T/uDVEk+DQR9/+2//hudruVzunGcT8cknn3j8Y+YRT61WS5IkjtecBUrSNcPvgl5e80gjEsearJ31HJxiOQ+8V3nonYdGo/HOzS6XASsaPPhXq1X0ej0cHh6i0WggEJh447mB1iWRgOlkOp3A8D7WiiqtVuJ7mHUQ0YkvCUPdrqAPuFrpqZNsEh9ci5T8asILmJIgOunhYYHTLzudDvb39/Hs2TPs7u6iWq0iEAgIQZHP5+XzJGHFAQlsJft4PLoW567xGOJHGAgE8PXXX8tnUSgUlvaY09U7fT+T0NLkm/43wWoaq3pa8cR9Tydisw69LiGp1THcE3K5nOzJvJb6/bJVfTQa4fDwUKrJjNHdbhepVEpICyql2NrBGMI4xaRSJ/XXAap2iVAohE8++eScamhZcICGSzzpa0JotVMoFJJ7y23P0ocYt4VWE0R8rySzqHRw3z8/f/3/4+Nj+fxZZGN+xv2FiT5jqm7LY8zRe4CuBGslx3VgOBji3/27fzf3++vr6yiXyxeSxfPW9aKBGSQfSRjMu39IOi2Kexcp7njgXGa9LCKndJvKu/T1WQbj0WQKGyds5vN5RCKRhT4xi0BlEM8/+hzgkgS8XzQx4BZ9dOujblF3i0dcV26LHzsIuO/qFh693nVhhsV9Ph/fP79O/0Dm57lcTl6/VCpJrschP9zTR6MREteoKiZhe3p6KubK9Km9DPh5cK3pQg1wfm/UWKR4clst9R6t47EWNjC/0l0GJDtoSUHiyefzeWwaSKrSjmQ0Gs1VRc+Dbsft9XooXUMBAACGwxH+f//X/4VMJoM/+ZM/wfHxscS40WjiU7SIeHKLKvx8dFFTt5ZqMleD60l/DlyTmtzS65PPQVKWj+ff2hORj+N5BpgUOA4ODuRMoMkunqGDwSDa7Tb29/cRCoVkXzs6OhLPbVoUNRoN7Ozs4NmzZ0gkEviLv/gLT5Gp2Wzib/1vI/hXTIovRTwNBgP883/+zxGLxZBIJKSVhhPNdnd3Ua/XUavV8MMf/lCMo0kcpVIpGd98eHiI4+NjGXNPtQnb5JiIsLcQmCauiURCDrX1el0m21G6T6mgrqyMx2NUq1WRmNHYOp/PyyGF/lMk1Uqlknj/0Kjr2bNncgCKRqMelRATJh6yeOPplgPeRPyabjVy//b7/fjeCgv+shiNRviDP/gDANMDJqvY5XIZX3zxhTCxn376Kba2tiTZ4fUlycPFwmswHo9FEccWRAbgWCwmlSQGMW3Kzs+O04tevnwpZrMkd1gVpVIhGAyiXC7j6dOn0lbD9s12u429vT2P0omkIhcmE7R0Oo3Dw0NptePnwmBF4sW9vm6iTtab/9b/fxeYRzoBwD/5J//kXII8a6PmZzIcDiVxmYVUKiVVpHm98yR95yXXrHxrcsEFK7qLiCfeq65p6aznug0V2dFohP/wH/6DrAVOqMjn86Jse/Lkycy2LF2p4jrTsl5gOjJdS451K5wOwvwZV96tA7du+dIJK9ePVmBpNZT296JEmO+L71crHegNxMoOK1NU1oxGI/F1YhsFybu9vT05nLO4QD+bb1fG19MFMB7jZz/7GVKpFHZ2drC3twefzydk2byWnFngWtZScb1X6cR2MBjI45k0kZzQ1U8mRVSu6uRJQxOZVBxrtRMJ6Vwuh62tLWm9oMqJeykTpHa7LcoDtt6ThIpEIigWix7FHH8/Ko97vZ4k21RIBoNB+P/ys2mv+RViNBrhTJlPVyoVbG9vi8HrZYinZDJ5jjCYpXhiosvCEBVfTMq14kmrMPQhSu8LmuBhAVAXWYDptCz6pvn9fqnC8r7jvcCfo+qNpBNzDibQ/B73Hx6seLCgAlkUUNdEKi7Cw4cPZe0ugiaDNbSKzUUwGBS1E1sNZ0G3TM4C89dF9x+vyUW5C/fbRTFWK1dvMoajEf7H//gfQvKyaE1/tVXBgyLvBe6zBPcz3sdaBcxzhiYWeFbQBQSuYX0o1sQ/f4bqFn1OYa7Ax2iSi2uNBHCj0ZC9hMphWqRwz+dervcJXWQ4ODiQSZWRSASJa7ZD5Z7Gc+BlDOMJV+0CnC82X6R40qID5jB8bn5dx1W9X3Pv0Gop7ovAlHjifqLJDraws4hD1dPh4aHcq5rc1lYowHRiuW6H5nNfJ7k8HA7xb/7NvxFfSr/fj1KpJJ9FPp9HNpud+/MslOrCrN7veK0YA/Ua4+/LtanXFeOcViZq5T/vHf6cm9OyGKPVkPQxZH6aSqUwHk+U+icnJ6I2rNVqiEajePnyJV69eoWdnR20Wi1ks1mcnJxIXI7H4/K1ly9fyj7earUQCASwu7srsabX6wlptSou2Wo3lrGxTBK1JJrV4+985zv40Y9+BACSGAIQLyB+SPTr6Xa70g6hjamDwaAYl2rmN5fLibkzMDm8vnjxAmtra2g2m+j3+8LS8kYJhULY2Ng4FxRponZ8fCwG0sFgUEYQUtp9cHAgkrR+vy8GqnrUOzd8rerRLvD0LCIDqSXibMPiBs/E7boqsm5CQVPxp0+fyoIplUr4R//oH8nhjIlOOp0WzyNuSKx88Hemio2/k55wwyClK0LcxNlO8+rVK2SzWTEnB6b3Fp+HFUAmwkzImHTt7e2J5xg9GehNxvuNQZfJOq8HN5dkMikm99wktJyYGxeJLtc4kp/tTcTv/M7vnLvfZrVq8R5mVWQWaUSCWLfazQLbX+Ylqrym4/EYsVhsJrnElsyLiKdwOOwx3JuF20A6AZMgyH2l3+9LGyj3kI2NDXz88cfnfs5VPJEIZ6DWJCkfzzWtE1mdeGhiSqtJGFyZFGmCismRPkhq4oB7DpNan2/i0URFnktykUwGIC1F3GcY3ElQAxAzxuFw4jVILzoWLKig3N3dnbzW+WVwZfjJT34ihZVUKoX19XVks1kEg0GJNctAE/huBZTXjGSTewDivsaquCYTNcmrq+kafE2teOMaJBGUz+eFlOj3+zg4OMDW1hYSiYSoCtjWzoNOoVCQQRI6AVyEWRPFmCy/K/zgBz9ALpdDJBKRw9sqh3G/f2qUqg8gXL96H+fa4j3Oa812Rq45rlHdauOSy4yLXJ/cb/TBh2D8ZrGISllgWgCgCo0tPJlMBuPxGLu7uxJXmF+EQiGp1vJ9M9YyfrA1NBQKofkG1+dtIJVK4dGjRygUChc+lnmM65fI/GkWtE8mr8s8aDX9rOdhC+YiuEqzeb/HRc/De+s2oNFoIBKJoFaroVAoYG1tDalU6lLEGfNbreyd9TmwUKfJCsYwrYwBvEUFrku2wfFr3J/5fd2yQwUS91IqIrlH8LzE1i5Oq+Qa5P/Ztk0P3kKhgGazKe2JVFTwvJfP5+Hz+WSC9Gg0wlpt9dady2A8HuPLL7+Uz5Ok22X9nYBpHGQ+wxyIcEko/V4WEU+6qEMSUKtndEHPLQ4B03OdjhOuupn3Gq87z8MHBwcolUrIZrOeghenlrvnGO5hADz33eT3vQ5f1LG06lON2+/3USgUxHZikT8m1wvPgbym4/HUh43XhF05/FzJM+hhWjqn4nXTRB7Xv7Zq0QUCXkcdm7U9Bs+/o9FIuoba7Ta63S62trbEpyufz+Mv//IvMRhMhnfEYjFUq1VsbW1JBw8VgHxPweBkWjxzc+0vyvbUy+BSxFMgEMDv//7v4+joSNqdmHQcHBwgEAhgc3MTv/ZrvybBVifKkUhE2u2YBNObgcQTK5tnZ2dIJBIyxUcH1UKhIF8LBieGkhzBzCk3TJa5qCn55MQqJsLAJLFhW91Pf/pTtNttZDIZNJtNfPbZZ3jx4oVMP4vH43j8+LGYZupNQ5uN88IxsSIRwRtS+wDpnm7+TdLrC7//ypesz+fDj370I0/LEkc/cwFmMhn83u/9Hj76aNKHzZ5tAPI70rit1+uJdw/7qA8PDz0HGE48A6YkxXg8ls1LE3AMeDQsp2qKwVMvPhoaau+lVColG+vOzo6wvIeHh9LPSuIvnU6jWCzK+yErzKqArvzxOpP44LXUbLb+rAaDgRgld25Yxe/Xf/3X8eDBg3NfL5fL575GWe5wOJRR1y5YjeXBZB7xxMr2PINyHkpIPM0Cr8ksDymCZsbcH247AgE//uk//afiA/TTn/4UP//5zyURfPz48czrqQknJqJuJZukg06e+HgmQVQHcs3ya/x5BkmdfOjWVWA6OYdf01/XknP6PJGE1tJ0Pu/BwYHsE5TxM0a1Wi05PKTTafkZJk68fxlcq9UqgIkcn8STz3eA60ieSK5wItzW1hY++OADId1WqbTryiT3K614AqYtEnoNa2JCV16pOmGc1nAPYoxzJJ6Y3PCww2tP9RNl8dls1uMXlc/n0W63pSq9zCF+GZDQxHXlxArr6+v41re+Jb6QrmJwGVD95iqe9LUiSCxopYUm7oDpYYeJpk523WotE1PGRa220NVaYNoSwGTVbQsJhUJ4/PgxEokEOp0OqtUqarUaOp0Ovv76a7x69QrRaBTb29sIhULS+hSPx5FOp5HNZnF8fIzDw0NEIhGMx2N5rV/4fNd9aT345V/+ZfzgBz9YWGUnWIhz4+AidRBV5iR0FxUptcp+1mvzeuoDsAt9yJ0Hru+LyKfbAJ/Ph48++giFQgH37t3D5uYmtra2FrbrXPR8zFf1+tJFF5KvzF31uYekEKFViVoRpcljXRTQ65PXkfGf+3QwGJSJg3zPfA4WypnT6dgwHo+l6L+xsYFEIiFniEajgYODA7lXqUzO5/OoVqtCHl+nPlG3PedyOQB4I+JJ5y/6M9Gk0UWKJ0046H2UP6eJCK2y0Xu+q9TRxBOLA7o1k8/LdjuqnkgyD4dDIZ14Bpu1j+i8kqQKye4grqeF0ufz48MPH+Pk5ESKSiRyCoUCPvzwwwsN0/UEPN7zjIH8fVhQ42NctbJ+3HA4lPMpFUv8Weah/HkWk5nvamWjHvzF52Zc73a7nlyNakZ6X47HY1mPmUwG0WhUlFAcQsRpxKlUSoa9lEolBAIBZLNZeS5gct6v1WqXIhQvSTwF8S/+5b/E119/jdevX+P4+FjURe12G5FIBI8fP5YJZ/TeIaiaYWtet9uVlrtKpYJeryfKmNFoJL5Q7gbMaTV6itru7i6Oj4/FYFT70IRCIZluA0wWSSqVktGg3HB2dnZwdHSEbDaLfr+P58+f4/nz5/IcDx48wP3792VjJZHEtg4mVdpgmpsHW9fi8bj4VjFx0Ac/XWkcjUb48ujqiadQKIT/8l/+C1qtFr755hs8e/YMP/nJT/Anf/InqNfryGaz+M3f/E383u/9niwGBh/+fCKREENyfh4ksvb398UTiwuK0+MY2KgiYhLF12ELCDdbKqmA6UGRi5aHcN2CwU2bRFcwGMTx8TG++uorvHr1CsfHx/D5Jv3nP/7xj5HP57G1tYX19XXE43Hs7Oyg2+0ik8nI/alVHVSvkRXWLSW8x9LptNzvJB3/j/8WxOCKxTXBYBD/5//5/8bx8TH+43/8j/hv/+2/zXxcOp3Gv/gX/2LmpjzL44lKsUWqAf7+3AfmVWNJYM1LVNn2ushkFZi2/81DPB5HsVjEzs7O3MfcJvj9fvzWb/2W/P/73/8+fvGLX+Drr79GNBrFj370o7m+Wlr1BEyDs5vY8HWYyDBp1IdMfZB0FYJu4svXYdKqVYPaO0IfdN0DcqPR8FSYRqMRjo+PRaHE5FYrbSKRiJAZ/Lvb7WJnZ0cUu5VKBcPhZHgCp1B1u10kk8nJPnL8Oa6DodDXlf5Sp6enMixhFQUsExxdRXOJJ7Ym6bWj/Qe1yoHEE+M9r7dOjvVz6DjBAzT3dz2AIpFISGW1Uql49gq2YaTT6bdGOr0L+Hw+3L9/H6VSCd/97nfxwx/+UNpQeO9fpNzSYAx1f0a3PxDMSVgV1UUj5lB6P9At5LoNlz+r/00FBwC5H1yVJIszbFnnPROJRHDv3j2sra0BmNxfNOPWVfhwOIyHDx9KEYu/99raGiqVCp49e4ZCoYBMJoNarYaTkxPs7+/jr6+BePL7/VhfX8fLly89X//1X/91/P7v/74QjBeB+eAszFMH0f+M13fR62jFqQtNXLntJcu8Dw0WA98HBINB/Pt//+/RbDYxHA6RzWbF5uMy4Fpn+yiLRCRegCkBCUDWjqt20v/XMZSP5XlFx1+X+NDEVK/XE1WhPrxS2cHYz8IpFU6cuEjFarPZRDAYRKVSkQIF23JCoZC0sz19+lQUx9zHBoMBxrgmjyefD2tra5Jzaq/Yy0IrDnl9dPFs8rLLt9rp77ltXJpg4uvp19Utdpp4Yv7mKlOBabtdu91GPB73kF0kRI6OjuS9ch2wvY73EXC+vS54Tex/MBjEv/23/1am1f/1X/81dnZ2kEql8Hf+zt8Rz+lFIEHHz5f8AmMXP2OeUfV10Od9nl1d1SIwzcsYI7l/89pq0pE/w3tV52tue7ZWtPHf9XpdlPPFYlHaJ3kO5v5BfqLVakk8oACHghL+7uRSLqNOvPRUu0QigcePHyMWi+Gbb77B7u4u0uk0Njc3USqVJKmhsZyLbDYrrXLNZhP1el0M5vr9vvg5+P1+YeAArzs+K6M6OTk8PMTLly/Fq4dKDLa6kaFLp9Mitzs4OEClUhHiK5PJoNVqoVAoyEbKDalYLOLBgwf45JNPZMRvPp/3BGP+Xrryz1G2yWQSqVRKzDSXhe94fOXnHVbZKSWuVqvY2NjA3/pbfwv7+/vY3t7Gd77zHVGVsIVNI5FIoFqtSkJL4qnX6+H169fio8TX44FOK6ooa6biiQQWybh2uy1VFCa+rLhyQQSDQezv78tr8PGBQADFYlFaOD777DPxDMlms/id3/kd/OhHP0I0GkWlUsHa2hqKxSIeP36Mw8NDUV4wmWbCQDkxvchovjYaTcfTsi0NmGyOuVwOvv9+9SHW7w/gH/yDf4BAIIB//I//Mf7gD/4A/+k//Sf88R//sVyLDz74AP/yX/5LfPLJJzMD46w1zMoIK1ezwLamixRP/X5/oTE4/eR6vd7ChG+RagqA9K6/SXJxkxGPx/Hd734Xn376KYDZSQ6/rgkdYGoGyWSVj9NVLMA7+UgfeLUKioFQB2TdzqWfXwdJqq+AaVKsX4PtUkdHR/L+uf5IRlPNxHHXz58/FwI0n89LbMhkMshkMuIjmMlk8PHHH4uiku25TLLexPvhMvjggw9EFk2TbwArtdkBU8UTCxuaRNCKJypR3FZxEk9MuFhl4yGEqsZZh1omoSQ2uP+RrGC8p18iDcL185Dg9vl8S6lGbjKCwSD+9b/+1+j1etje3saHH34oOQwriasqnjihUbdXuIcYvjbtCoDJfcTx53qNuQkzr7kmnhiXmZxyf+d712rH0WgksZDqaVaAqX5Pp9OoVCqiUuJhlwWgV69eidqSVd9oNCrxttPpSF61ubmJJ0+eSPHp/xMI4Kobp4OhIP7oj/4I//k//2f89Kc/RTKZxPe+9z386q/+qnweyxCKi6auzlMqMQ/jwWXR6yzyeGKRjofWeQSTnig473mo3HkT8GDHNmm25mq7jeuAz+fDw4cPMRqN5DzxpgbUvE5cX1pdzH/r+MaDJjBtewOmPkx62hXXHNefVlNpBT5/nt/n9ebn63r66fYjtu8AkLYsfj7dbhfBYBD5fB7JZBLVahW7u7tyDioWizK5lNPIabtyrdcVEFUzMLVIeVPoPIef9yziSf++i4gnfY34dd0qOY940tfabbWbt365jw+HQ7x+/VqMpOnvowUUPFPP6jDQE6h5Zm9f06X1+Xz4lV/5FQATC4+9vT3s7e2h1+uhXC7PLKK74FoBzhvr6zWlyVytVtRKX21ZoIuuXE/MzUjW06tW557A1AuO505e52g0Ktf37OxMhjAxr2q326LUIknN889wOEQ6nfbsHQ8ePMCrV68QCASku4tF3Wq16rF/4Bl8VVyaeAIgFahSqYTPP/8cL1++lMA1Go2QzWbFINRFLBYTg3GSTM+fP8e3vvUtnJ6eyij7QCDgIYlcaWA+nxfpPgDU63W8ePECo9FI1EjNZhPFYhGxWAy5XE6mUhCJRAL5fB71el0YXDK8X3/9tbB/tVoNm5ubePjwofyeVLFkMhlJwjQ5pkkTeg5dDtdrkBkKhVAqlaTlhJUJGoNTlumqT5LJpFQ0SAbS/4dG40wsmQiTOGTbAAMtlUmsCnE6jl5MTJL0++CBkwuZz0NS4vj4WA5alE9GIhE8ePAAv/zLv+whDMkEax+FbDbr2fAPDw9F7sj7VLcQEqwYANN+6usCE5xUKoXf+Z3fwaeffoqDgwPs7u6iWCzil37pl0R1MAt6yh3R7/flQDGP7GEyy4R6HuFDFdg84olKD/rwzAPNo2eBJCQVGG8Cv386lpxTLYHJdd/Y2MAXX/gxp7B8Lbjo3tJqJz3FRns7MXhqib5WLmlpMA+hXBeaeOJ6YrDUrcgkI7iW9f6ovdP4njk4gh6Dfr8f3W4XrVYL3W4XxWJRJrKwGsvHsVVTt56xhZYHWO5rPPR2Oh2USiVpYmldGwAAeBVJREFULbgu+HzTYRw+n09a2qgSXgVMcDSBA8BD8HAPZVt0LBYT0ki3Det7hIcFTkAFIJNyCO533FeYTJGsaLVaQkjo348t9sBE3QZMSNW3cTB4l/D7/fh7f+/viVdVNpsVDwVgSgiv8nwkngDI4VUrF/m8jK9MGDnF8fnz5+eq6QSLPYD38MI2ChYTSHzowzIPKWy7JzHM/YLkcKlUElUffVZYiCDJGo/HRe1ar9dlD89kMmKfkMvlpEX+4cOH0t7j2/GqkK4K6+vr+N3f/V384Ac/gN/vx9bWFnK5nKhrl7mu9ENcBSQT/X6/h1ichUVq4Gg06mmfmoeLDhvcP1cprM4C8yz+Toyzkldds2c819qbgjGR5wHGOe6bWrHCdatb3qma135u/LeOoVTJaIWFXpdu0YcxX/s46e+xxY+Kw1qtJr8Th/fw7JbJZJBKpcRQ//nz52i1Wkgmk6jX6zKhutVqoVQqIZ1OI5fLTeLT3rsZBvC2YgvjMz87XodFa0aTTcsonvQ1dIknvq4uGvA5L9qDGJPq9Trq9boQiJxOnkgkxMJAdzlo/1YtutCY76h6dYjFYlhfX0elUpF4tUzRmcVTl6TV15TKRbc4y2vlejsRfA4SPVyHjKUknvia+n5g/saYqpXjusuH8ZID0bg3cFo394JQKCRdPa9fv8ZgMBC7A56h2eVTKBRQKpVE5c5zOULXTDwR6XQav/RLvyTG3OylLBaLcxdbKBRCpVKRtoF+v48XL17g+fPn6HQ6Mu6RVVAmoe4Nnc/npUra7/dlYhnNrziV6P79+1hfX8fGxsa5G48+AQxofr8fDx8+FB+oeDyO+/fvI51OY2NjA+vr6xI8OOViHnjguY1IpVLS6zsYDFCv18WY2+fziYG3Blvn+PWzszM0Gg25kcnCauKJ94hWOfFQz6DLa5tMJnF0dCSBl+00egpIPB6Xz5xS31gsJgTg6empeGcdHh4KSfqrv/qrqFQq6Ha7SKfTWF9fRzAYFIP6ZrMpGwwTalbh2JNPhYLeoNzqgk42xuMEriODIhHg9/vFOyabzQqZqj07ZoGyam0kOBwOpeWw2Zxt4Up1EX9+XuDTqsBZSCaTcvBc1Gq3SDWl75FSqXROEbAsfD4fNjc38fjxY1SrVfzhH/4hnj9/LknxpJXlWoZkvRF4L7NCw2qMK/PVj9WJre5p53Nks1lUq9VzP8v9kuSFTpL5f14f/hyDsQ7m9JBrNBrY39+XRJdV10wmI5N1dHJNEprrlr5kAKR6wzYgktQkzVmdElnxNV9X/k5UGl0GkUhEDCf115gcMSHTCSX3aK1g0P4ufr9fEjr6MTI5JUg8cdooiYxoNIpGoyEy8VgshsFgIIMpWG0nKenz+VZWet1UbG5uot1u4+TkxDPVEVhN7QRMrlsulztHFnDtaOUKlTH0GUwmk6Is0j+vE2hebx3DtN8e8zOuTZ2Ucx0nEgkpPulDdTgcRqFQkJyBxFir1cJ4PBYVHF+LuQKT9VqthlKpJMNqPv74Y8kTaPmwSJlzFSB5FggERDGvP9OLoIflLAut+F6kmAIWD81gnL6IeAKwMG6ypd4lPlYBPwcWigHI8JdUKjVR3Vw38/SWwIOjVj3x61pBqElc5mc6BmsVDdXK+uuazOJezuui47P+P+OkjgNc07SQYFyk6oWEGJWHjUYDuVxOJmvpeDIYDLC7u4vDw0MMh0PUajVUKhV8+OGHqFar+NnPfoaDveu+Im8X/MxZeHNb4matLfd6AN6WOu6b/Lq+Xvy6LhpqZZOOLcvsQSzycrq7VoK5aleetW5yQUhbNCwLrk3GR1c9pkksXgddeAGmRRuemXSnAGMlX0OLOSh40J0BvP48a1KJRvKI15k2CCSmDg4O5NxVr9c9Zzx2kTCuspjT6/WEDCa/cnh4iEQiIR1KXNOTz+TaptrNRjabXakisLm5iVgshlAoJBOZOOZdGzen02lpTXMXDlVMrAKQ0UulUqKk8vl8yOfzolRyQcXU+vo6nj9/Lh/q69evEY/HUSqVUCqVUCwWpVUvlUq9N4nwPPCzPzk5kYMBE8JyuSwHEg2STrrvdH9/XxYfiQEuGH6GTDC1SklXUalOqNVqaDQaMgWQz8OkWv8cW7xarZZUR6lAA4Dd3V0hodbW1vDo0SNhke/fvy/mppy2QT8jJt79fl/aIzKZDPb39y/xKc8nLd8m2KPPALi+vi4tR3rTm3fwIaHnTrCg78G8CXEkE0kqzHt+VtLmTfojyXlRyxMTo3m/A9t2WbW/zGTBSqWCv//3/z6+973vifnt7u6uJBjvckrWstBtc0xG+dlp4slNdHUllkQT7y0iHo/LlAxCv46reOLoXd5/OhHme9AHnVqthm+++Qb9fl/UDwyKuk2QAT0QCIj6lfGGpIfrmaQVOySQSbhOruu7Oey8qXqARDzVX8DkcMcWWa7/ZrMpZDoAj9JYS8UBeA7VLCq4Hm1a4ckkjASt9guhGTxNxKl+1ErCy6uFbx6Yh7BtjJ/pqgk8VRjMjVxCQD+vnthE8o+EEX9et/5wrbrP6/f7papNf0qSXFodSVIZgKxLxmwW7crlsgyZYVxl3kBlBSu0hUJBEnCu90qlIi0EsVgMqVQK7XYbR0dHKBaL137PcA/jva4PGsuAE4NWfU0elC5qtVukeOLeeNFzXASt7Gd+sSrC4bDkZLlcTqY/09Ok3W6jezt5Jzm8M3/musjlcjg4ODjXtqpVxgAkjurWKv7h4zSRoZXHPOhyHWpSmeuIz8E8hvs0PZhYXHWtE7LZLPb39yUOsODc6XRkIMTLly/RaDSQzWbx4MEDPH78WEjGw8PDGzvpeRXwM2E+OK/VTp9l9TVxC3Zuq50mpDTRoe8HTRC5tgjufTIPVJcHg0GUSiXUajVPqzy7U95HaPU+MFWHu1M/+XVNJOkWWq4XTcJroorPx2vEIgt/lo/nGuYa1Uo6Pg+/z1yJHT6BQEAKjnoSp943WPyhHUWj0RCvNp6JM5kMisUi0uk0BoMB/uzP/gyvXr3C9x9j5bT4rRJPq4ISa148jrbP5XIi9QwGg0gmk+cm2hFs7aJ7e6fTwcnJCdbX13FyciIJ1vr6+txEhC1AxWJRXNufPn2KRqMhctFwOIxisSjv+SYzvG8TnOoGTKTkR0dHKJVKkuS5IPnDyvVoNEK9Xhcz4FarJaQRAy+TXybj0WjUIx9nIlqv1xEKhaS6zkMhiSq2uzGB4iJjX2w8Hke320W9Xscf/dEfSaBLpVLi7eXz+cQIHICQV1y4rVZLnostdlrVxjZBMte6pYmgwuM6EQqFPIQIlQzcXMfj8cLKBT9PjqonuMbmeTzRLFWTirNAD4d5vhJsyVzUrsfnWdS/zoMO75vLJDqPHz/G7/7u7yKRSOCzzz6TVhcGnImybuWnfSfQSgW2UemDp1Yq8T7WySsrXuzz5x5NRR9JCb4Oq558LD8v/p/7Mw9IDOoMvMDkXtza2sJXX30l5DgN7PX0J6oruSfRP0Yb1BcKBRljD0CmiQCTtU4vIsam2wqqkKhI4lrU6iWuLSpTfD6fh3hiMsOf0deNk7j0ZzQcDoW40BJyXn+2XdTrdQDeQ/fJyYlnT1n1MH7Twc+Th+k3UTwVCgXPdFxC/58xiS2X3P9nKRn1wWTWXkqFGg+MnMinCWoeeph4a+Kaewrba7QfKBWJ/Gx2dnZQr9eFzKnX6zg5OZGBHZlMBkdHR3KQp/q9Xq9jPB57xn9fB9h+wYEqmuBfBpfxH2Rxh4TgolbcRfGOat1FcfoikDxcpO64CGzB/I3f+A08evQIx8fHeP36NXK5nJDR1+239zbBdaCtJKge0XFWrxmtBOa9xO+TXNDEkT7oMr9jvNVDO3T7EH+eRDTzVBYV6DPFduzBYCCDfHThUv8OjUZDitTcd8rlMj788EM8fPhQPhM+T6FQQNPnuzX50yzQY5aG0QA8++usfXoR8eS22mnCUBOFswqGs4gnkkluK5kGJ6TRNuWuQXdncA1Ou1Sm0+S4FrXXk75+VIzxvMtrpD2e2N3FGKa7DwBvDGZezLXM+0zn8RRjsIAXDAZFPby2tiaDtIBJfp3JZKS9nee1w8NDOce/ePECPp9PzsrRaBSvXr3C0dHRubPtsninxBP78xOJBI6OjsSbJRQK4eDgQIxi0+n03L5RKmzS6TQODg6kUsY2qn6/L0qsWT41fD0683/nO9/Bl19+iU6ng3Q6ja2tLRkzeO/ePSEk7hJ4M5ZKJQyHQxm9OOswwENeJpORYFav12VxnJycyMFDJ0y695YqhFmKJwY+BklgSqIwyWRAz+fzspC5SQeDQdTrdc8Uhlgshq2tLWm5oZcTwQprLBYTg71OpyPkG33MdHBYFtdVMGAiyR5gJm/87Chfn/f+WaF2cXR0hH6/P9NgEJiSiNxUFyXg81rkgCnxRM+oeZindgImbD8nlfH9rIpYLIZ/+A//Ie7fvy+90PR3Y8J3G6pAunoWDE7NSHXAY4LDf886pGqlEOAlnkgWMcjyoMsDKb/HRJhkLd+H/izdg3AsFsODBw8QCAQkoaXCia/D6Zkkx8bjsSidYrGYeDhRFcXfg9ex3W4jm81K4n2bFTckHXRlDfAqYoCpcnM8HiOdTsvvrCfjMZHiIZbkHFuPCcrFee1dpVQ8HhfSKRwOSwt3PB6XpInv9U1GXN9UhMNhaS/WZOwqYPzSwzXc7zPpZUxl5VYfevU0M12l11VR/Zx8rySNzs7OPPs7SXjGBt0ywOJQKpWSQxrVE9wzuIabzab4CNJPbzQaoVgsCuHGvYSxgWr3b775xnO4vS4wl+x2u3LfLntdV221Y97EQ4dWF8+KhYsUDiwQLdNqNw/M/7hPXKZAG41GsbW1hX/2z/4ZPv/8c/GaSSQSQopTbXEb+Ql+tuy0GAwGosbn9xkbXSIXmB46AS/ZAEzbsHgNtUKCz6MJJp0bM//j6/MaUhjAXPr4+FgKv9qfjgSFbvEj+cSDrN/vxw9+8AN873vfQygUkomybNn2+/0T9cRtvLB/g3A4jFwud46kmKV04v+1qsm9DzSRASz2eNLxXJOS/Bow9RjiveCCSk2S6HcRuj1PqxIB79Ab7dXLz5xFaF4P5pQ6tjLm6XyZ3kzAdMAHX0srn4DpvcG8iiSwLg5yqJqrQOU9wvPq+vq6eDCn02kp2Pb7fZycnMjwnVAohJOTExwfH+PFixcAJub8t454AoB79+7hT//0T7G3t4dOp4MXL154DCTZ0javCsOpWTTN5E3i8/mk6sVJbfO8lph4Mdn58MMPUSqVpFrr8/lQqVTe+9a6RdCLcBEDzgShUChIn+nx8bEEMZqCs0rOA6Emnph8aY8nerI0Gg1pAeB1JvmofZ2olGP7jd4gxuOxGJ3SZ+LevXuiXJlXNfT7JwamHCcaDAbl9wQuV927LmjiKRqNilE7pZM0Hp6XKAYCgZnEbaPRmDvZAphWUbWPCIkvF4uIJ15HbtjzsKiiy3HtJKYvE1TX1tbw/e9/36O+IjHOCvfkPrj5mRODJPc9qhMY5IDpNKZZigWdLOkEF/ASgExy+FxaCcNACXinh+j3oFt4NDGl2/7YysUqrc/nk72Gh1w+NhgMolgsyvNqIo1JgluF4uvdhus6C1y/x8fHCAaDYgzuEk+sSI9GI88e6Cp02CLGz5QVQnoyscLNfVInPHqNRqNR5HI5FAoFeT2fz4disegxhX8fQRWqVpFdpqWSlcl5lXTGyEwmI157JPI7nY6QFbMOs3ofIHRbF5VWmsBicYPJ98nJifjDAJP9IJlMiik41R58Ht5TPNSGw2FRI/O9lkol5PN5z95B1Go1/PznP0e328WLFy8wjoSutUOWucZwOJSYtux1ZdFtWTAfIwHnHjRWfd+MiZdV9PM59OF5VaRSKfzgBz/A2toavvrqK1HNUmXu9/tRLBbxta+O8S3cj/mZsPDHNlht5u2SCvprOgfS5AYfw9dgrOX+zNxE7/nczzXBwdfkHk9VBpWObI8ej8fSEcHCjJ5eyva84+NjtFotVCoV2atisZjk291uV3xbJ2eLm5tHLwP92c9qiZv1+FUUT4zDhCaedAFDt2wBXuKJ99CsDgMWj2apaO8KyDfwGnBQDQDP58mzsEvWu2SgzjW5pnSXBK9JPB6Xa8b7gGdnrkfGTLdwSx/QwWAg3WKMl3qSHW2JOFQtm81ib2/vXAGIa5nF9XA4jMPDQ09BsFarwdfCymnxOyeetre3PRPQXr16hVgshkajIXJsEj6zqp4MSPF43DM5JxaLod1uS5KSy+UWBn8mN0yaK5UKjo+PxRckn8/f2UW4Cpgw5vN52fzo6zQajcSM2ueb+GTRdJZJKzD18yCRyAPp6ekpdnd35XDMhUfikY9lkE2lUtK7SkO0WCyG4+NjSa5TqRS2t7exvb0tP7vooBONRj3TPG4LdPuCTiz0AYGPm/fzs4inZrOJXq831+NJt03q6zOLeJpHGnEf0G2Z8yq6izwsqHxsNBrSerIqvvOd70jCxPuvUCggk8mIn9yb+vFcJ3QQcwOeJn5IOFGFqCXkwHRamSY4mfiwskMyYzgcimk3JcwMcEyydEKkJcW6VU/fq3oSD+8B7hOsBFFSzPZZXYlkgkeCicMLaMDNxGCM25kW8/BWKpVEocnP0ZVL6+tL6Orn6empJKf83Jk0sbiQzWZFwczkzFW8kXRk8ch9v9fdJnXdYLxjQglgZsHjItCEmWtUg+uTbRObm5uoVquSAPPz57oGpgdSJruu2ikajUpspRqC61zfDzywsrVeDxVIp9NC0FBxy7VPJdhgMEA2mxXPOMZ8v9+PUqkkByeu506ng0wmI35QbO+/7rRNq/b4/2UVexcV9lyQmOXvrwt2q4LenG8Sv+j5xcl3HGqwLFgI3N7elnuLbVjMC7Ua4TZCE0+cMMl1r5WH2hdTk0r83fk82lSca5d7OP+QcNbtQox5JKfcPYjkEduv+X64f+uvMSYUi0Xs7e3JumYMyGazyOVyEnO08rbT6eDZs2fSPfA+gHkN9yxNIuo9WpOB84gn7Qukf06/FqGJJ+ZB2lOTj2FOxpxHrycSLO9rwWcZML/ndWMBUueWXJfMY3WezJ/jPUA1k7vOuNbYfcMci+tSq9uYJ/AcBcCjxk+n0xKrB4OB+DXpgpDP55McORwOY2trS2Iy74dQKIR0Oi1xtd1uS9cKB/mEw2Hk8/lJ3tZaPcC+896Bra0tz9S6er2Ozz//XDa1bDYr1ep5wTSTyQiTzmTn5cuXssDW1tbke/PAYJ3NZlEul1Eul2XE79bW1q0OdNeNeDyOYrHomWwHTHw7OCEOgDjqA/AkS0wseM24yQ4GA7x48ULMsIHJ4i2Xy/IzWtLKJDQYDEpVMJ/PIxKJIJlMolQqYXt7G48fPxam+bKExG2Ae6hhgNGVj3lVGb/fPzMp6HQ68mcWmBQz0Gllm4t5HjrhcBipVMqTcM5bj4ta7TKZjJhhsxKwCuLxOB49eiQbP4MPN3gm/ZMKxEpP/U7A4KjJI03qslqjK6wkD3Q1lSSGJp7cyXUMajyAUb7Lao8mf3SVjuDzavN4yowZsNlKxjYXBkjeK9q7hiQsD4X8faia0q/BZGOeH8JtAa8z17orwb8I2qDcNQ33+/2yh9KUnXsC93geRgCITwhwuakz7wMYq/SkwMt8Dpzqpg83wPT6kiwqFAqoVqvIZrOeKaOcVKOLPLrtg+uC7y+Xy6FWq80kMPmcjLtMmGkODUzjPg/V9GXifsoDMqcw8r0ynxuPx+KHc3Z2JtVYEhzMD+7du4cHDx5c/gK9AehxCUDe6zJgIXVZaH9LYKr2XrVIysKQvi6XAfMsAFJkWgWxWExy75OTEznwlMtlscugim5R2+BNBq+N9nhiUVQfdLlf6sMni7Qs4ADemMj9RCt5mXPRo4n7DZ+Xignd8g5MCze6fZbXlsVk5taDwQCtVguBQEByIbbr5HI5PHjwQJRO9Puj/y5b9zjs5n0Afw99j84invh/nVto4sltq3MfQ2hSia+lVdz6MbxveJ11sZZ+g5oEuYvQpK3+7LWyXyv8dNeL/jcJJNdugDmxVjzx+fh/XmMW5ElOsWjK9jwqJdl5kUgkJC5oLoOCHlqE5HI5GRjA98Pn1VxIMBhEp9OR12IOsOowOY13TjzlcjlRNbHFjj463KSofJmHTCYjVTufbzJV6vXr18L6sdJ9EfEEQNrAeJE1OWJYDpTRkuHlWMdms4l2uy0HQI5zdFlcEkiFQkGSID5Po9HwHGojkYhM9dGBEZhUWdjmRQUUW6OKxSIePXqE9fV1TxsO2wfeR7j3P4kGHfjmrZFAIIBisXju661WS/7MgvYf4Z95yei8Vjv6k5Ag0Oo4F4uSUd6TfD+rBlaO/R2NRuh2u3Lf+v1+8QJiYLgt4kgGHGDqy8R2FwZcBqFSqQQAHgUTg657/zBp5fdJ7PC6UfHE19WBj8GP657JtlYlAdOJInxP9K/hHkHFElUYrlydP8uWB/7+nObBQMsD7yJS8zZAXxvgvL/TRaACqdvtiqKBSRCVFyQIdnd3hVzU8VOrpphQ3dUEl58foYsmq4Cqbt2qCnjHcufzeXzwwQdSyQSmymKqhrnGtAKO601XabPZLNLptKcVnodkrm8qd3jPUTnl908n4vFPLpcDMCWjuY55uGV1Vh+8uV4BSDGBE1aPj49FzZxKpd6JUj0QCKBUKslntSzYHrEsSBy612DVAzxVpel0+hyBuQro/akVOKsgk8mgXC4jkUig1+t5BtXwoBQIBFZSUd1E6GIJSR8d87i2ZpHBjL8EiSeuUcZw2k9QLR6LxSS2ck0wDvJ6c33pWKcfy+IDvXS1twx9YgqFAkqlEgaDASqVCh48eCD3BM9Tw+EQR0dHaLfbUoBIpVKTtr+r//ivHHp6KD8/929Cq2AAL/HE/7uKJ/exungITFXqwHziiddSdxpolfJd7vDh2uN61MUUrSpkocVVOwFe4lBfO5K5ukjAxzAH0C2aVDrx2mjbGJJUw+FQiGzm1oFAQAp85XJZTMO73S5isRhKpZJ0mmm1JAlodrmww6PX62F9fR2bm5vY2NhAPp+/lLIWuAHEE02ryfbTP4KVMHo3LaqcpFIpIRhisRiGwyEODg4wHk/8ndhmdxHxxIs4GAxMbvgGIBnEg8pwOMSrV69kEXCRkZnlgtNMcTwel0omAzGr6Vq1wNY4Jl46kWcLHtlpn8+HbrcrU+yKxaIclrh56Erl+watRtFBSR/e5wUbn883s9Wu0+mg0WjM7BX3+XzCtHNDXtRKMK9NjsbxJBe0cmIV6Eo//6yCcrmMx48fSxBgkk1fs3Q6jUAggEQicSuCNgMj738GHbfNDZiO2tbJr1bMMPHl1/g8mnCkohCYtnnqiR9aYeGSI1rxpBMpl3jSezyTJ+13oIknPjcP4Pw/K0Kc1qf742+hpYjATTxXnaSmSfnRaCTrmp8b/Wl47egnp9eqrpjz8HhXiScAHj+fyxa4gsEgKpWKZxKPRjgcxoMHD7CxsYFareZRHPP7zI/cVg+37ZXEBiu9urDD52G8pVRfT7hkgs7WeOZ33B/4OCbcx8fHslfQE4v3ExWULDyOx2O8fv0azWYTAGTa3rsCCb1VYoHP51sp5+RgHcZuFmVWPRCQ4GCBR1fxVwFb7Xjgotp5GbDAsba2JoedSqUi3iUsGunD3W0FiSf6B/LwOBqNPN4q+lxC6JZad436/X5P0YXdB+Vy2VNs0eQi1yefg8MCGC95UOaez0Nou90WpVY0GpWBTsAk16pUKtjY2EClUhEbAnqK8pzH4RKlUgmlUmmytm/5tQWmxJNWy8xrlePj3H/rvdhVPLkklks8cf1qNa2rimIs1hOEXZXyXQVjkCae9OdP4on7pttiR7CAqRX2wFRRxdyUBCX3Sz2ch9eHBC1jCosvurU9EAiIHxvXcafTES/NVquFSCSCjY0Nsbmh4km3/QHTmJDP55HJZJDJZLC+vo6HDx/KGefWEk9+v18mx7lu78lk0tOjOA/pdFoOD9xsz87OkEqlkMvlUCqVPCzhLDBxAia+NSSe7voCvAw41U4bDb569Uo8WLhoaBrPKqi+PiSNWFEHIIxzsViUjZiVFCZLOmmj1wO/xo21VqvhyZMnckhliwj9iN5XaFWfrnDpNop5YNLgQh8OXPBgoZVKTG5nYR7xRNUjN3qqIVdBJBKR6XNMXlcxcfX7/djY2EC1WpVkMB6Pi9SUEtdkMol79+7B53vnW+uFYKDkgZOkDgOelgUzwLASwoDpVus4LICBkwGNz6/JTwZOVll1xVb30OsEwE2y9e9BlYO+1m6roE7U+PvRjDcUCol6j2Pi2dOun+O2wlU8rdpqBwCFQkEOgPQU4HUjIcF4zIm0OnZrVQwwLR7cVYTDYTmMvQnxVC6XhXjV15Pkx8bGhqfllJ87E2MS8W6V3W0v1YbifG5tWq4N4nlI1a06bJ2iGoOea9rDjSSy3kNYeOCwACqh+Lr5fB4AxBuKe/xtxCqFC+513ANJ9K5amOEe+yYTJBnbSTyNRiMhxZZBJBJBqVRCOp3G+vo68vm87OfAVAkfiUQm+cYtLgJodb2Ot1yXyWRSporqw6dWX+h2HN0Oq1vpeF/wmrpTa/U65/9JLDF2soDE+0q3tDOOJ5NJjMdjtFotNJtNJBIJsUfgVEuSpMz9w+GwqNq2trZQq9VEVX3bwXtWF9uWLfC4iqdZ39f7tH5u5uFcz7wX3KIT81dgWnymin9V1eX7CLd9jmuDf3Mt0BtRF1wI3R5LBZO+ppqU5/fIYzDP1bYTmiDk61IJTHJLT4Pm8BCSvszFyuUy1tbWRO0EeBVyrn9nMplEpVIREY8+G9xa4gmYTIpi4kA/AAbQfD5/YSAlm6dbqnig2tjYWJpQ4GNIOs2bbmZYDH7erFoNh0McHh7i5OREjEZZHeeCc68PnfRJDuhqKTdUKk2Y8DCJ1qhWq9KDro3T1tbWPFNEWKF9nxVu3Bz14X3W1It5YEuExtnZGY6Ojma2IbFFjqQvlUqrBjVWURkQ3fadZZ+DbQQkr1YxL45Go9jY2JA20mw2i62tLTmEsfI/DTy3IyvWxI7bVqMPgjrRYVscAxyTx0QiIcSTni7HagzJXWBKLrm+EjrY8nCr/6YqC/Canuvqra4ka0NiHoY06crPgPcp28gymQz8fj9OT08949xv6VkWwJR44trXRqTLgvsn2ys0CcgEW3uKeNfEBGyNYnx/XxWmy4IHzcuC7Wq8Z7UiWMvlSSyRSHWHNTB/ArwVeJ0ss0Vet02znZrEB9evVs8AEA+hXC7nGTrh3ku6rS8cDsv9wvfi8/lE+cS4n06nRZHLQsVtbY29yBZCg4VW7oO8lquuKRYfqFLTB5FlQUKRExYZO5Y9nMRiMVQqFSla0pSXsZXxn0Xq2xFhZ4MHQ+6ZmlziOtGxmdYfXNO8XiT+tVqQJJTOl93BDnxNYDq6XauBSWDwOpLQZhGx3++j0+mg1WqJ4pKEaTabxcbGhrTy0IaB15WvWSgUZNrm+zZIgjkv72HgvKm4/lvvt5oYnAVX/QScVzNrxRPvBcDbisc/4/HYMyDofS6+Lwv3vKnbXTWRqNvvZimjmFMzr9U5p/ZB5DXl3s28lUbgJIMBiK8az0LsHOr1ekIe8ozU6XRkgh2HajEfoDqSBDPPAHwdei3O2sNXVcuf+3wv9VNvGVtbW9ILrz0jEokEcrnchRUgbnx6Kge/tr6+fq7KOg+xWMwzTnZWa5HhYjA5LRaLYqh2cnKCk5MT6VfVY4NnkRFUK3GB6P5TGgdTtcLrq32iCE40BCAtYXoaD+8rGsnf1irpsmAQZADSG81Fye6s9XB6eiqtDS4ikYhUvXTP9KrkXiKREIKRB5lV1Er6OZhEMclelliOx+NYW1uT34EDEagUYJJ92YlC7wJa9stgp8kawiWe9MGWCbMmA11ySCe9rI7y9Uk8yWHibwK1VkbqHnn93HwOrYTTLXraZ4r3oPtc/D04/RKYrA1W6sfjMQ4ODuSa386ZdhO4yedliKd57Xq6lb3X68meMGutB4NBaa24y2qntwW/fzL4oVwue1RMVBJz0Ie+dnyMlvzrNaLVEBokOjRppfc7rS4mKcU1qmX7WvGhWzZ15Z5E9Wg0wunpqVRtSXKSbKN3HP2AotGo+Fys6nV0E6AnNF8E5qz8XanUXPVAwHWoScRVcyGSiLoIsyzxxHuV5wCqanifsqBBP9hEInGLd+Kp4omxkf/X5LE++PZ6Pc9nSXUDMFVWUAFFX0L93CyQMS7qmK/B9c48neQFY71WWZydneH4+FjU8BsbG9je3sbDhw/xrW99C5VKBcAkziYSCVEnApPYc3JyIjnB++aryvNLoVA4p0oCcI6c0JileHLbvHg9dA4DnCeWtFm0/j73RZ67Dg8PJ/5aM0QAdxH6vKLJJB0TeRZhHNQKQ8LNV3X+qc+rWu2ov8biL/cATebzfEyin+b+AKT42mw2xYut1WpJUdVt6dNdDzxb8+w+a69YpktmEW4E8ZTJZKQPmUkNlQVa9TIPPp8PhUIB+XxeCIR0Oo1SqSReAssmuDTGo1mn4XJIJBKo1WqysdF4kLJiEkas/LgEAL2A+Bx64yRz6/f7ZaKhu2iJSCSCtbU1pNNpzyJj2w9fO5/Pr0xm3EZoYpWfmZ5QtQizqlI0jp8FSuP1IeUybQDJZFJaLbhZr6qayufz4vmhW/6WXePJZBK1Ws3TNgLA02bCw9skOK309t4JtBJI+yCReNJqIR14dYuelnGT/HFJHwZKVn1KpRJSqdS5CR9a0cTgxyRXK5Z0NRaYJgm6qqR9M1zFkw7sfB6fz4eNjQ2k02kkk0lRODFp8/l8qNVq13p93jZ0q5VuzVglzs0jr3ggAaZtH5chiA2XQ7VaxebmphRVuM+yAKRNUdkew9Y83W6n14k+zAJTA2ptYM3X4RrT5qgAPEMhqERiIZEkib5vWHVlTAqHw2i1WmKImkqlUC6XZWId9yC+9+FwKO0FJEJuG6g6WgZusZUE1KoxljkWr4lWvy0LFh+o5NEKnYuIsEAgIPdGsViUe5A5mt8/MRendcaHH34In//2Uk+aeNVxTcdjEj1cE/qz5KGQnzHXG+O3LrAB00MuVRR8bsDbEsRYqK0T6LHG10mn09IKy9djcTcej0tBIZFIoFQqIZPJiFWC3++X3I1+Qu+b2gmAJ6fSXyPmEU+a2CD570LnQy6pNcvjSRcLXeLJ3R9pf3LXofNWft5aiUvlpVZE8XPTajafzyexzPU61EUb/dx8Te4JzIXZoaPJJWBqb8H3SyJKG4WzBZ3vm3s883Sub9ptaOJSfw6uWv5Wt9rFYjExvvzhD3+Ib3/72yiVStjc3BSJ+EXIZrPI5/MiA9cjBVc1Ep7VHmBYDSSemGTSC4jJpa6szVKeMHnSJuUMsmyF5PNwAc4inkKhECqVigTAbDYrrTPJZBLVahX3799fSd5+m6EVCHpdMJlZhFnJ8Hg8xsnJydzHc4IRyYHLtNrp1h7eF6tWZbTXF+8RTntZ9j2Uy2UP2QFAFJlsNbsMsfYuwcoGkxxOOtTJrNuCw2BLIo8Bloktn4PJryaVaBJLbwvg/Lhxjlp2EyaSS/w3gzWDuPYz4IQsPkZLiWcpnoBJIKdXBc1VGaQzmQwKhcJVX44rBYkDYNrHrw8gy2Ce4sk9VAC41T47tw3JZBL379/3TO7k/l6pVGSva7fbsi61MSr3aDd51u0BXGf08NFEh1ZtcO9gQsu4TRKMpBM9ntiWopVWHK0eDAbFxDgQCKBcLqNaraJUKnn2DE71YWGKbfW3sXrPPWcZxONxTws5ScFV1x2JJ5JHWuW6LMLhsPws9xmttlkEquF0S7wuDlIZQzPrcrkM3y3WPHHf5XqKRqPY3Nz0tNBwTXE96cOw26LDeMl1x/WgWx713q+LMVpVMRgM5KDMn+XrAlP1Eov7AGQNu9PSgKkvKzCNHRPl8ATv69TwWUTQLAXTLKLpIuKJ94LO0Wa9HomERYonts6Hw2EZ5mWYrk8SLlo9qHNg7pO63U6vW9e+ApjeC4xvrgG8zqO1JQrXuKtqpho/nU7LHqrXHMU3wHRIEN/vLOKJikgSl8B5m4bLFC01bgS7omWJ6+vr+OCDD7C1tYWHDx8uneyzLS8SiUjfIv+/yjhbw9tBOp1GLpcTB3666wNTg1IGHL1QCCZSrJbw8cPhUMzSmORQxjvL2yAUCqFYLEr1hSN5G42GEE+VSkVMot93BALTSTtra2vyeS0T/Dmu0wWvqwuy6npz1i05y4LT6HhPsHq+Cmi+y2p/v9+XEaPLoFgsiqk94CUrqtWqKJ9IXNwG6OQTgCdx1V/TQZT/Z2Ai0c8JGayKaNNwHcB5gOCoc5KTOuliZcfnm5otkrBmRWYW8aS9oXTFVsuFNfHkXku+HgCcnJwIebW+vi7G+redR+HaI3m/6lpcRDwB3kPH++yXd9MQCoWwvb2NarWKZDKJbDYrRs/5fF4m+x4dHQGYkoJuUYD3A9eGmzCPx2NRMfF1OXGW+7NeT1zf9Hbi++FEWd3ezn1GT7/VnnGMHblcTu43vt/BYODZe4PBILLZ7K0kPklELANeY2BKrq8ySY7QXlxUUF2GvOJ9wSIgY8RFz0UvL7bEc6/XLYT0B41Go7h3795t7nr2tK2RbNJFOh2vGNtYHCSRxFinW2B4QCUJ7KqCAUhhid9nXKbCod1ue4hlTSCzY4C5oFZN8r26964bI8LhMAqFAorF4ntrZ+Kuv0VxdpHiSe+NhFZqa+KJ157/X6bVDpjsN8Vi0UMIGuC5r9kSrq8PzzVcq66KjeuXxRutGGKs1Ko4HY+Bybphm5wmiLnP63gNQLoIqPTt9/tiJl4ul0UJpffmecSTXvsAPKpk/fdlxRo3RuJRqVTw7Nkz1Ot1ZLNZab1bVh0RiURQLpdlPGc2m0WhUBAm13C90C2PvKnJHAeDQWlpcRNeDQYojkrmImcljColTsaZlWz5fD7kcjk5OMZiMRwcHKDf7yMej2Nzc1NGzd4V0BwbmGxW3MwuAg8QjUbD83X3/wSr7tyU3clJy4LG4sC0d3lV4onyb26yNMROJpPY399f+LMkL0ul0rlpDjS4JXlCo+Dbct5hgqK9F5jQApA1q6trXIc8hBYKBVFSkPzhc2gZsq6+RiIRMRl2FVaUBeuqMH9Wt+HxvejpmUy6+ZyEHm88T/EETNZDo9FAvV6XgRfvkwdFKDQZSU9iblX1IQ8v7sQVrs94PO6ZtGK4HsRiMdRqNdy/f1/UxdyPcrkcarWa3Od+v19US/zDOKxVgsB54ol7byKRQKfT8RxQtXqKjyf51O/3Je5QJcocgY/n381mU/aOTCaDRqMhBAZb87j/MnnmUIFsNovhcChFx9uIVVrt8vm8xHLdhn6ZVjsegvQ0tVWfIxwOy7RBqt0vKmpxf6XiggpY7jGhUMgTp4vFIu7fvw/fF77bMsPjHHRraiAQEO9SErhafRiPx9FqteTxmlQgOaH3Y8ZLKoR1zNUFHq1E1nGx2WxKTsDv85r0+315Ht0qx/fier4Bs9URt3VtLgtePzdfJGa12rmKJ3cv1o/n+tTPr20SeA9pUlITH3ehu+NNwHs5FouJ6bo+e7oxz72+jINsddPXhuvMvUd0vszn0EVgV0VMolrfA7yHWIwYjUYol8uoVCr42c9+JoopXRzSCi3m167iiRMoSWZp8u0yuDGn7UqlIp4aHJm7SgANBoPIZDKiaqlUKsjn8/K8husFE95KpeKRcCeTSfFq4P9nLVwAYjZJ42Etc2SFiM+3yK+Hfl9stSORxarLXSKdXGgJ9kVg66qLeYontqBxY3PNbJcFq2s8JK1iCk7kcjnEYjEhJqiaWUZaHIvFZMzzrGkOvKe4f02q9Su9vXcCrXhikNGtNYQbhPgzTGT0Z0FpsSZ1eGBlgjwcDqV9Uns/8GfY1w5Mvd60lJxeGPy+fv80yHTHRtOk2A3k/D7BcbH9fh+np6eScL8vMcT9PVY9AOjWPCYpgDeRvYzHjOHNwCrnxsYG1tfXcf/+fTEWL5fLosgEIG1umtjVHk/6MOtWeMPhMNLptCgRdWsA1zr3en0Qjkaj4rlJg2iSTqzIx2IxafPRv5P2raKXzCzFEwBRSd3m9UoPnYsQDoexsbEhxA4r9Pz9VzkU6MfzQLPq4VTnYGy/CgQmJriL3gvfc7Va9bTrAZPrSr9XtmWVSiUUCoVb32rH9lO/f2IfweIND73A5H6mKojXVR9eAZw7ROqiDeMi1y7JRf4bgCdu+v1+NJtNad/h8/J1z87O5H10u100m01Pe61+XuJN23JuK3QMnEc86Xa6Wa12szDPXJy5my4a6n+7bXiG+eD6ocBBtx9rtREVRq5fk/7cdbscr51uTyf0BDmtOObZV+daOmZT1cbiKwB5Dp532L7O+EhowplqYy1E4Ptg7tDv98Us/U3IyxtDeyaTSaytreHp06c4PT3F48ePpZK9LEqlEnZ2dtBqtZBOp8Vw3HD98Pl8qFaruHfvniSUvOmDwaCYuFOuOwvhcBj5fF4qcL1eT3xl6MdCNZOeEOAiEAhge3sb3W5XWqwAYG1tDdVq9co+g/cNNIx0oQ8L7uNZHdMSTxKHy4y7pqKNGzIwUaXoZOcisGUzHo+j2+161Hc8yCxCLBaT6Zj0xtH3Gp87Ho/j4OBAKiQ3HQx6vB4APIQNMD/J0a1z+qAKTIKTlhTrXngSTySL3YA9Ho8lAddEI1vw+FoMfrwPGIAZbDlpTycK+nldJQdBlWWr1ZIE/X1qGaOyQbdbrApW0rXX3l07VNxErK2tiSqz3W5LK2s+n/eYxubzefk3Cf1gMOjZnwGv2olJeCqVQq1Wk4Rbq6b0Hyo/6ZXGVvdsNivvhYoYVlHpE8PW3WAwiFarJS32HD7D98P3D0yJJz2S/rZiWcUT1fy8TnpYC68N9+FF0NceuHyrHdspA4EAcrkcjo6O0G6356rRgakqjsNdNAE6HA7F2JrTwfQgj9sMxjGSdYPBQJR+2r+Fh0Aq26h80oSFVofpYQDhcFj8nLSCkMUcl+ggScWJpOl0WtRSXE+MwYlEAru7ux6/xdFodM42w/WIu0sIhUKSG8+yEiGWIZ54L+jiu6uWcQuG3EvnqZMN88F1qNcO/63Pq1qdyMfo2EQSmCQVizKzFGl8DH+eZybtA8Vclo/nz/Ce0K/Bdcx7g5Mx3cERmnhi7s58ml9nnqiJpzeJsTfmDvT5fPjWt74lUn36uqyCVCqFR48e4fDwEOPx2MY1v2MUi0Vsbm5ibW0NOzs7csPTCI3J0bxr5PP5sLm5iXw+j0gkIqbgw+FQEtmNjQ2prC0KbNFoFNVqFbu7uwCAb3/7254qsOFizGtb1eNCNah4AqZtGiQgotHoUgQN2zK1WR4TWR3YFyEajYq5OBMpBotliKdoNIrt7W2PrFWTFfQKoz/FZPO/8GlvDNxJgTT+ZhLEz8slnvSYZU1M0WOPP6uDOHvIAcjXdHVlPJ4aewOQVo3T01O5h+j3odvs+L54kOVEEKqlKA/WAZrP7x6w6IdD3MbJWIuQyWTQ7XaRSqVWPlwC03Y9Kh0tkb0ZyGQy2N7eRiKRQCQSwdOnTzEej7GxsYFYLIZWqyVqJ4LXThuWuooKYEpOawKfiaduhz07O5M1RdU6i0T5fB7lcllIKV2tjUQiODs7Q7fbFTN/ANjf30cul5MhI3wd3a4ATAlzrZS8raCK+yJQCaTbZ7gnMkbOi80aJHu4x5P0W6XoS1VbLBZDOp1Gt9vFs2fPMBqNPFOJXfD9Mt9nOz4PW4zvoVAIm5ubKJVKOD4+Xiru32ToNRIOh0XJq6dIkXzSBTrdhgNAYiwAURlq5YS+joy1OpfSxRqqmkhuaSUHYyYtKkqlEl6+fOk5bPM5dDzQKunLxJrbjFgshk6nM9MawiWe3ByKj3FJKT5GFwi0ipvPB0yJJ01cABavlwFzTW0qzs+dcYvrhephXdBkrst1FAgEcHp6KtdErxtNGJJs4vVke/nx8bEo/aPRqJBIzIWpbNKk0dnZmewjbOOlUkvn3K46i8IOrVRkPB2NRlJ8fxNu5UbdgclkUtQowOXMSdlS5bJ6hutHMBjEgwcP8OjRIwwGA6TTaZkUlc1mMRgMxHx0HnK5HB4+fIif/OQnopLhQZKG8sQi4onqlmw2i0ajgW63K201huUQCARWOoRzahHgHcXtVg0WIRwOy3rmhp1MJsVXaZkENB6Po1AoeCZ4sBrP516UoMdiMWxtbXkIDh3oA4EAKpUK1tfXcXx8/DdTlZb69d4peO/rdjVWy7WSya2e8/fnWmRyQykxW7D4Pa144mMAeEgpYjwen/O6YBv1ycnJuXuK/jFMvlgld4024/G4R+o8q82OSCaTYnCsPWjeF5AMeJOfZzUNeLMExPD2kEgkkM/nRYXw5MkTrK+vo1wuo91uy72vr5cmm7VSBvC2g3DPLBQK4gGhSV8mtN1u19O+x4NqoVAQ02y22XM/YDvV2dmZeGJks1k0m00xV9XFBh3ntWEyfcv0oew2ghN/L0I8Hkc2m/UYqrPaPWtgyzzo1g0AojzioWkVZTJfO5vNelpTtE8fodXPnEitp+KdnZ3JNeXPxeNxNJvNpd7TTYZWAicSCRwdHcmhlMUSXhce9Hjva8ULD6DsHNCFHU0I6wOmjuvA1Gyc3z8+PhZvVuZqVDT1ej0hjUlWstjG96fvu7ussgmFQkt3VGhSieD/NfGhcxfug7oAqME2Z94TWhlpWAzuo26Bg0pfFku4Ptiqyj2Pz6ELuMxTdQFePxaAh5iifywLfSS+uB5JglF5TrWSblnnftFqteT/ej/mc/I9aoWWSxprnyfgze6jGxWdqW7w+XxvlPBfxsDY8PYRDAZRLBZl6hfJAo5V5kZ6UZL15MkTVCoVpFIpudn7/T4ymQzy+bxc64uIJ/6dy+WQyWSWUrsYpmDL2rKgUSgwPbxwbS47tpXVcv4cDx/6uS9CIpFAsViUloJ0Oo14PI7BYHCh6i0QCKBUKiGfz8/1KuB7un//PtbW1m7NfcV1w0MHA4+enjFP8aSl3zysanNx3QeuCSgGXwZdXfXRbXJMpnQbEBWU2keEzz0YDCTx5vMyGXDNanXyNuuA6vP5UCgUUKvV3ju109uAG19NNXoz4Pf7US6XUSqVEI1GUS6Xsb6+DmCqPHAJR01WaONinUQHAgFRdephFFxXrP7SWJprajgcSrznWua6ptKDRLHf75eWerZqBQIBdLtd8f1xq7WAl2Sigva2E6HLjph3J9rxekUiEWljXAYkonnA4FQ53Qa9zHPwmtIXhc/JFjkXupBEXytNugDTNn7u11S9DQYDjG+rszi8RZ9MJiOxkZ8j73WqFQDIQZc/x3+T3GHM43pyW/ZYLCLpxeKMbicajUZS+OH0Sl4LPp55Adcxiz/JZPLc/XJX/Z0uwizFE3Ded5Lf02oaTTTP+hmC18olcd93Y/e3AU0Mk2xifgtMbUSoQOIactVrfDzzWmB6XuBjGRN1S6o+02ryWRdf+Ievx6IPz9n6bH18fCzxGJgqJbXPm/aE0sQT166+b0h6XRY3ingCvG0rhtuNYDAoEvl79+55JPc8nPNQuQhMoFkN4s/VajWUSiV53DLEEyX5DO6G5UFieBlwA+TGp2XePLQsAxJF3OR1S+Wy74U+YUykeVBi0FgUiBOJBCqVCpLJ5NyJIKxOFItFFAoFFAqFpd7XTQGTUwZBwGuKqA+N+v/aYyIUCglhRcUR1RV8PJ9Dmxe6bXAAJEni9dLtBdxTstks0um0HF4oD9beM/y93PvEfe/zYMWL+eBnusz+bbg+kIgg4ePGOTev4loh+UDiQq+9YHBi8r2+vo5KpSLtWGwx4KQfXYkFgG636xnNrKupbAfkQZmvyzZ8rahgy572ztDg70eS4rYfrKgCv6jwWigUJI7qlhD+/LL5jfb8YSu73reXAYuJyWQS4/FYfKr48yQpNfSgGA6Z4D2liScdizhZ1/WzuW3QB8tcLodyuYxqtSrTGHW7HQ+vzIGomgC8cZqtriR/uXbZBqfXIJ+Xz811OxwO0W63pRtBDxzQE674M/rQzSnV2lfMpqjNhqt04b/1tQSmbXQ6Z3Fb5lwfN35/MBgIEaxtBuxaXAzGI026MCbRH5aEOQsrxKz2SDef5jXQj2FrtG5t1T5d3Nv1++F94vf7hZziOYSt7WdnZ2i1WlL81zk4u4i0R9w84kkLRJY9v83DjbwDLeF/P0CiKJ/Po9FoyKJ58uSJTJlilXMRstkstre30Ww2ZeJVoVDAo0ePPIt4EfHEgyhZZ/7fsDyCweDSah62QvIQwGSHDP2yGxcnIOoRpgzEy6qmOE0JmCa7mUwGh4eHckCbh3Q6jbW1NVFIAbPvM/aD37t3728CyVJv7Z1CJ7+amGW7C4MiP3MdiPQerSXJAMTEn9ecgUzLiZn4cv1ymgZfn0alrnQZgCggms0mgsGgR0XF6xmJRLCzsyPtG7Mk7MBi4skwH5pUNtwcsJWt3+/L/huPx9FoNETVpKEPuJwizNjI9RiNRrG+vo7t7W1kMhmk02lsbGzI9Cvd3qWflx5r2siYj2WyrhVS7vvS03y0QbV7cKI/lP4MbjOCwaD4POmWVg0SFvRc5HUlkb9Kq50uvpA00grjZUD/L7Zcc2IxMNnvqYbRh2TGBU45pE+Uzs20goexIpVKzf1cbgu02pgFMK5bPTBDr1dN+Gg1hj7QMj/mtGgqlriW5k1B42fb6XREGaPJZLbRAtP1xtcpl8s4OjrC6empHGyJRTnTXYareOLXXPWS22rHrwGQYt+8ATv87HX+86aEwV2CnlzHOEnVYCgUQqlUEp9MrRp082MAnnZHrkmd1/LnSDzxerMDgWdpbU+hC7pcy4PBAMViEfF4HK1WC7FYDI1Gw1MconeeHujB98bfVZOgOu5WKhXpLngTWNZtuDKQKFhfXxdDwsePH+PRo0fI5XKSnFwUlDihMJfLIRqN4t69e/j2t78ti0D3si+C3nRZWTMsj1UUT5SQu2oVJpXLHg6SySRSqZRUH3RiPcvofBbW1tZEmcGElgbSnMQzD9lsFhsbG56KxayEnhVm+k/dJmhVEYlZPSmDhKHb881ryOvASgrNwRlQ+beu0roBnQfefr8vVVtXTTOrYs4gqWXC8Xgc6+vryOfzsr+4yZkRT2+OVRQRhusBfSGy2azsd36/X8bRu9AtOTz082tcf6lUCvfu3cPa2hrK5TLy+byQE1yfVFcxAefP6tjMfYAtWVz33Et4AHMPq8lkUlRYwPn9V6tpZilrbhuo0lx0SAyFQqhUKkL+Ug3DfZaHpmXAeApAquCMZ8sSBiT4WVCIxWIol8vw+XyiXtUFCv4/EAjIvcn7Qt+DnPamWzsSiQQKhQJ8uL35Gz8HnZPw4Ec/tUwm47E24PrUcZNxj7kVDfp5Hd1DMBVPPNi63k/dbtdjisype2zXYisgPWt435F04mAS/XqAKZ5cXEQ8aTsAt9VunuKJ95T26wEmin+SHcsWaw1eMh+YXgdgGu90q7fOh/T1IomjB+7MMpvXr6MViTQK5/c4sEEP96ASi89NEp/PMx6PPeQ/la2xWEwmTXc6HVFFAbPVivSYelPYbmC4MnBBFAoFrK+vo9VqIZVKoVwuI5PJSNXzIgIokUggk8lgfX1dTIbL5bIE3WWrexzLDMA24EuASqFlEIvFUCgUPJJSfdhYtvJSLBaxsbEhFQFg2hqwrOJibW1NggInMtHD5/j4GGtra/jss8/OGYyHw2HUajVsb297vjfrXmMCNh2QcPOTYl115QGQa4oBT5NH2tRyOBxKWwyJOz6GrXassDCg6qp6KBRCu932qBV9Ph9OT089AwS0l4X2PdDP41Z/3cRcH574XtxkzWB4H+D3+5HP53F8fLxUjCNJxLXqqkrj8TiKxaIQuR999JG0EqdSKbRaLVG48CDKCbR8P2xb4N80Fid51ev15G+Sz/1+H9VqFf1+X4ynqbhwlcp+v19Mz98XFV4ymUQymZQpvC6i0Si2traQy+WkiKLbMVYhjXTbJP+sMtnO5/NJS6dWBlQqFVEIMI7wTzQaFe9G2i+kUinP4Y3Tmbif89qyBew2g7GMBCHjLtUE2WwWqVRKhuEwd9WtNTzcao8YTrjiOmT84+FT/6zbOgfAczj2+/1CVmvymP5hJIt7vR56vZ74euncwVrtLoZLPHHPdD1/XMWTJp70ZDuSvcBUAVksFq/1d3ofwHyV+xDjISdwusSuSzxpYld7POl8G4AoS3VxhnsCFZ9sRwem3ol63RcKBaTTac9UunQ6jWazKWbjw+EQ6XRa2t8zmYyon3q9nnhE8bmv0p/NdgPDlYLKFBp6s22JidIyN3UgEECxWMTBwYEQDqVSyZPMLBPYfD7f0oodw3kEAoGlPz89oQaYbq66rWMZ0O8DgIfh54Q6HaBnIRqNolaryQGL5riJRAKPHz9GOBzGX/7lX4rfiPva1WpVjPCJWS2aWtI+qfQu9eu9U+iAyQoMD346GdKmpnwMwbY2QhNPWuXGFg4mrJTka+UTEyYGRl190e9XV/5YHdJtBro3nkm0e4+Y4snwviIajS49TUkrZDShz8mULBxls1nxjGBCWigUROGYSCRE9aDVkIlEQqqt4XAY+Xxe9ot8Po/9/X0hrDh5h8qPVCqFWCwmLYNUcswqVPH9vy+4aOhFIpHARx99hGKx6KnMcy9fRfGkYyxzKrbNLfOZkjxinCDhyXvm5OREfJxILtIDKpVKIZlM4uHDh3JY457M12buoNv2S6XSpLZzS62edJs7CSIAQp6yYBOJRMTHtNFoCAGhFRJ60pZul4nFYlLEAaZG1YyH/KxJMmlPN75HqjrS6TSOj48BTNTihUIBmUwGg8FAzMg1UaWnDmpViGGCRYqnWYU+AB7yEJgShvToYb7k8/mE+DfC7/IgOUTyjm1y3GdZSNf3tlskBSAkr97X3OvCPJtrNBaLyWRl3b5KFagm5bn+6eE2Ho/l/NXpdISYZBcKBzMVi0UcHh6i0+mg3W6LMjUajYr1BWDEk+EWgvLbtbU1tFotxONxpFIpz2K5CD6fD9VqFfV6HaPRCK1WS5Ib7ftiuHos297G6pcmnriR82/X88GFzzeZbskNUCeeNBlNpVJoNBpzn4NkJzAlh/L5PADI9AdWF3nwIbLZLHK5nOcQpysVGtqfYlIRPFnmY7oR8Pl80j7j8/mEeCJ5M8tMHTg/XcXnm5qb6mqqboOh35Yefa5JydPTU3k+XQHXBxJCJ9IksPiH5JX7XkmCuUmdwXAXwcMKCQvuq4PBQAil9fV1lEolVCoV2Y/pRxGPx+UAqiul6XRaVC1UUhWLRZRKJY8CslqtynrVhFM4HJYWrEQiMVOd8T4jm83OLc74fD6Uy2UUCoVzak5XscSDyjzQi5Hqcz09jh5TyzwHW8wDgckExG63i1KphLW1NYxGI/T7faTTaZydncHv96NYLMpAjo8//hgPHz7Eq1evPAdrFop6vR7y+fx7RV7wd2FXgPZ00a3nGvqQy9yZcZqKNR1XdasrMCWDXLNptu1ks1mcnZ2J5yKJR7ZoMZ9jfGdh8ejoyNOax5HrWlFt8EITFG5LFsn1WcSTbr/TiideW+4ZVIfelf3yKqDzWr2v6WLNPMWTLnZqlT1V/FrFxu8z/nKaZLfbRafTkfMyLSoYryORCNrttpCOLLrSH5WdQPR5oqdTPp8X1RZ9ws7OznB6eip7AVv7rmrt2o5guFJodjeXy4kvARfCsjc2J7j0ej1JVunsD9gGe12g/wMnKFz0uFmKJ1bzuLnOQzQalao6nxOYXutisShS9HmoVqtSMXRbT2hankwmUavVcHBwIKqnUCiEQqGAzc1NlMtl+X3nHQa4wZ+dnf1NpXr+e7op0FVXJqkMXjoxnWVIDEzJHD1RyfV4YhLF59PKJmByjTudjiTfbLvJ5/PnRoLParXjc/C1WLnt9XoS4F2iSSdw79NhxmBYFUxgAYgnWi6Xk3WaTqfx5MkT3L9/X6ZIauUpQU8ZYKraIPlBEiWbzaLX6wlBQb8n/gzXM6dW1mo1UXGwKHBX4rxWhrmIRqMoFovnyBjdyqYnAS4ijUg6Ue3G6jjbIJd5DhqL5/N5bG1tiSEu2wCbzSZSqRSOj4/R6XSQzWalZT+Xy2F7e9vj4cV9fjAYiJ/TbZ9U6EIfVjkRkG0vmgzW0HGX8VqrEkKhEFqtllwzPdiDSmatBGZLTjQalcl6Pp8PR0dHcsiNxWLIZrOyT3CoBxXMbKtl4SoSiQjxRLxPSsS3hXnEkyYrXOJJ5zHaeoLtjsB58/DbPmjhXYKkLYuVrtqQZ1vmvjzf8A/3TJJLVBJrwYUm2umNR/+lk5MTIaNZVODrApNr2+12z+XD3D84/ZN/SGqxTVD7ODK+Ul181d5sRjwZrhQ6oWCvP1thVvEhSCaTWF9fR7PZRCaTQafTkeRlWS8Cw5sjmUwuTTzp5ElXuVmdY/vEPMTjcZTLZU+bG++ncDiMXC6HfD6Pb775Zu5z3L9/Hw8ePEA+nz93r2lyaXNzE0+fPpUJEJlMBhsbG9jY2EAmk5FpE/MUXwwmuVzub0iUhR/PjYJWoTE5peppGeJJG3z3ej25N3SvuiaeAMhjwuGwmBrGYjHU63UA0+vMoM73qV+XyQClyNqnhv+nuSKlztoXg+/RYLir0O2woVAIa2trMlmLaqf79+8LEeEajQJTrzWuPR5aqZ7KZDISC7hXcE/hQYkJfSwWQyaTkXHQJDE0yXwXQBWunsRLkIzJZDLniHkeUOjbdFF+xYJeKBSSNnSSUGyJvug52LaRz+fFS4aHrWq1imaziXg8jp2dHQCQmPr69WuUSiXUajUAkHYW12T+fVTMuEUfkj6np6eyFt3YxPWj4x6fg8Sv7iRg/CQR1Wq15Ov8nGknwLZW5lbZbFb8piqViqjrDg4OJEYXi0X0ej15/mw2K4di3arzvpGGbwM6l9EqJv1vV1HuKp501wAVKslkEp1Ox6OOMVwOXIfMi7UPE4sn3Bt1yyrzacY0YDotWg9Z0P5sfBz3TaqRWMjle+FeTXKq0Wh4BgwAEOVht9tFOBxGu90WP9ZMJoNIJCItsRwewvVarVaFxASujjR+/3Z0w40Czcoo0dUMLzfOZeD3+7G9vY29vb1z3i+3bYrYbQaJI/b7zwOZc5c0YEJLOegisIqqPX2SyaSY65F4modAIICPP/5YJjy5YIK+sbGBUqmEUqkk1YV8Po9qtYqtrS0EAgFUKpWF75XBht4otwH60MJDI9VO+rDjfnb6IEAyiQltr9fzTMXRlTv+LAM5ALmXxuMxcrkcDg4OZOy7m3i7LY4kxqii08b3VJ+RhGISYIong2EKKiKobmFySsVKpVJBKpWSlje9BvU+wBYCtgmQdOIeS29HEvdMaEkOMynP5/PY3NzEvXv3EAgE0O12cXR0BGA61esugG3erHxrcGrhrLyHey6ntdLnY9HrrK+vo1AoyGGJ10RPmpv3HIFAQIgw3iP9fl9aOMrlMp49e4bRaIRvf/vbyGQyUnX3+XzY3NxEMpmUg5UmLN5n4km35HANapNuqhHcn9Gt4vTbDIVCiMVicljVQz2Yf7MNHoD4WdJ7TauVGK+1aoqH1lqthnq9LrH7wYMHiEajqNfrMgCIvw+vnZurGybQ+xiJxHkklFZtu3lLKBQ612pH1Zmdi94Mmkzinsa2Yip19XAc3QqrSUH+rYlErmNee2Dq1cVcmu2tVKTmcjkp/Lveqpw4yfXGlld2FKTTaTx8+BAffvihkNPAJJZ0Oh0Ui0XpMHn9+rU8rxFPhluLUqmEnZ0dz8apF+yyoCfA2dmZJyFbdkKa4c1Bk1C9Oc0CfTr0RgzAMw3ioglEmUwG2WzWo5jJ5XIYjUbY2tpCo9HA+vo6ksnkOX8mYFKR++53v7tw8wyHw9KOV6lUpEL48OFDfPTRR/jggw8u+kgEswzKbzJ01Y1Jp5vg6HHPhEs8sUrOahB7zqls09J+N5nWrTaZTMbjYaGJIuC8txSDts83MbRlsB4MBlK9pwkjAzoJcOKuHGQNhlkgQRyPx5FMJpFKpXD//n1R23z88cfY2NhALpc7p1zQiidOnQsGg6JWYnU1mUyiVCohHo/LetN7fzKZxNHREUKhEEqlkpD9fBzJiLs0GCQSiWBzcxPpdNpDPJHQq1QqMwkZHmrY2ngRaVMsFnH//n2USiW0Wi05bFF51mg0FipW4vE41tfX8ejRI2nVbDQaEktqtRrS6bR4Pg0GA1Fk0HycLSBHR0cepcf7TDwBXoVaKBRCs9mUwg/XpYb2kBkMBh71eT6fx8OHD4W80lMGqQhmHIzH4zKNMhqNypAWAPK9eDwuPm2M/6lUCplMBsfHx0JSVyoVuYZ8XCQSEUUzcwCDF+5nohUvuq0LgMcCwW2/0581MPXUvCvK0KsE104oFBJVPslYFlU0gaxJZH6NeSy9D/mcXPfMid02SxZTqXoajUbSss7J2RwioFGtVlGr1aQA9OzZM/j9kwmjxWLRs4cAkzN1Pp9Hr9dDKpUS4oqqJyOeDLcWsVgMtVoN+/v7aLfbniC16o1NRh+AjHU2XB/Ipl8ESkJnEU/087lo3Dc9nABIaxQre6wurK+vI5FIzCSevvWtb+HBgwcLyU3+Pt/5znfQ6XTwzTffyOHre9/73kqkpp7MdJugJ84B8BgVupONdLKsKzbhcFhUC5T9cp3q6g4r4QRVSlSzaXNbPp/uXef75d+a7AImE5o4RpbPrdsG/X7/OWNzg+GuQrdsVCoVPH/+HMlkEj7fxMD6u9/9rrRPuXuhSwQXCgWsra3h5OQEiURCVDNU4FQqFYxGI2lTIFhMAiYVWPfArZWMdwWRSERa0vb29jAcDj2H/Y2NjZlxjQUAtlPwOswqiGSzWTx69AiVSkVitT58ZDIZtFotpFIpj9KFoEn4w4cP8fjxYyEZSJqcnZ0hmUyiWCyi2+0ik8nIdQ4EAiiVStje3sb6+rq0h/n9fmmt1JOc3kdw7bGdnbGWpt3u9dVfI4FEopHxNhaLCSGluw2A6TpNp9Not9tyj8XjcZydnYm6KZlMYm1tDaVSSdrvgMnaTKfTMoqdRLJrP8Cij8/nu5Nrdxlooon/16onndPQ3H+WRYBWk81qzzRcHlxX+rpwsit9z3TLrP7jenjpdjh9nbQFBYlh7vOcXkfPxGQyie3tbXzyySfw+/04PDwEMD1Da7Uqv/7kyRM0m82FLdPsQiGSyaT48q0iDFkF7+eObrhx4OhkSg4ZaO3gd7vA6uQicBoNCSbAO32QrP8ixRO9BUg8aek2q+lHR0eoVqvIZrM4Pj6WpBaYHGZ+/dd/XSbaLfp9MpkMHj16hHK5jP/5P/8nDg4O8PHHH4sR/rKg+eakLeHmz3rWa49EoZv0hMNhT3LjGmFq40K2QJJwIpmlE18SUwR9SkajkbTosGLPChGhCSw+HxM2ncAxkJ6cnKDdbsuBifuNJp4MhrsMJsBsd0qlUuh0OqhUKiiXyygWi0I8uXCLRv1+H8ViEQ8ePBAFVaPRQCqVEqXsrLYbqiv4b8Nk36X/0evXr3F6eopMJoNarYb79+8jl8vNVTyxWs4WyWg0OpM0+vjjj/Hpp59ibW0N9XodPp9PTN05/ej09FTGb7stf/F4HFtbW3j8+LFU9wF4/j0cDnH//n3s7OwgkUhgY2MDxWIRg8EApVJJDOtZvae6g+/XrdC/T2BbG39nkoW6TU5DKywYG9nayJyK8ZSFFhKRuVwOL168EN8tmhKn02lEIhFpS+dhk+082szY7/fj4cOH2N/fRygUmqtApHemYT5c0p5fI8HBfwPeqXbMnfg1koW9Xu/CQq5hNZAQ1gVPqoJJkruKJ5d4CgQCMjDAnUoHQIq7/D7POVzXjx49QqPRkAmzPJMwh9UerJxuqfdLttDzvSwDl4i6ChjxZLgWJBIJqXwxEbJpF7cP7HFeBMq39aYNQCqxnLhA9ZM2syNyuRzW19flIMJElJtnIBDAo0eP8M0332BtbQ17e3tCPMViMXz3u9/F48ePl0qACoUCzs7OUC6XkU6ncXx8jEKhINOdVgFNYYEXK/3cu4AOqDwUsvrS7/cl+dWqI/dnKQ2nmSEwuXacVDdrekexWBTDQ1Zoer2eJM98PdcDzu/3e3rlmVxrosyd8gRA7i8doAEjngwG7RVSKBRQqVTw9ddfi6fLRR56BJPm4XCIRCIhhuR7e3uy58/zegkEAjK91FpEJmBBJJPJyEFH+20lk8mZnyeJp1AohEwmg2KxiL29PXQ6HQ/hn81m8du//dtYW1tDPp+Xg4/eSzOZDEajEV6/fi0+fJyyFI1Gsba2hk8//VTa0TXxpAmSVCqFs7Mz8WTkHh6LxZDL5eT/VO9o4ul99gdiDKU6TLe36MlX+vHMmXlAzeVyHoNv/mFxkPkTp9PR94U5WCwWQywWQ7vd9kygTKfTnjZAggMIDG8GnXvNKubpYho/f01M6Dxn3sAbw5uBLYtUgLIzgN/TRLDed7XtBMlCTTxRGapzWe0HpQc80Oi/2WxifX0d1WrV4wvFM1UsFpN82s2ZZ/37XcOIJ8O1gTJdPbLecLsQDocv9NqIRqMzq9tUstCwlOqpWcRTsViUahwATwWUSKfT+N73vofvf//7ePnypWzkm5ub+PGPf4zvf//7S91j3Lx7vR7W1tbw8OFD8Qy6DG4jocFeb/psANNpVfSAYQsNMCWBSDwxQKbTaRnHTOKJj9FTbnSyxFYbtvfpRExfg1nEEwO8fgyhK4V8XU2Ava8tHAbDstAtHoHAZCpnq9VCNBpFuVxemKxy/ZAAZqWeB9+zszPZE6rV6sL3YZOvvCBRt7a2JuOtaeBMlcOsOEPyJhCYTGDd2trC8+fP0el0pDAQDoexvb2NjY0N8RFhe5f2kaGZ/JMnT+Dz+fDixQt5jVAohMePH+OTTz4R1ZIuCmmSP5vNotvtyvtPp9My/VTv6SSsRqORFJHe5xxRk74Ep0FS6a2hCzEkB0ke8Zrk83m5ngCE9GNcpcKqUqkgGo1K21y/34fP50OtVkM2mxV1m1s8NLwduAVZ/q1b7bS3JdeFW4A1XB2oJtIELK+FayZOTz0ORDo8PJQzBTDNQXnmoaKNz812Sj4n/UrH4zGazSZyuRzW1taEmNLvkbYlnGo5Kwd2//2uYZm34drgTlhZpY3JcDNA0kCb4bng5jqrYsfpKZlMBsFgEMViEc1m85zvz9raGrLZLOLxOEaj0dz2qHK5jN/4jd/A06dP8eTJE4zHY/z4xz/G3/27f/fCw45GMpmUMcHJZPK9TngJl2ACIJOn2u229IzzIKn7x3VFm5UcBkW3csv/z7tf6A91dnZ2Ts00r2KjjRjnEU/uNYxGo3L4Am5WIDYY3hX04d/vn0z0TKfTF6pF2VLAn9M+fPSN8fl8KJVKd2I/fZtgu9PW1pa02+XzeTFyXl9fn/lz2ispm82iWq2iWCzi5OQEvV4PwWAQ6XRaDONJPmiFDdWu9Acql8toNBpiWEs/oe9///v46KOPPJNNAXgOavQnyefzoiCm70+z2USz2fTce7xPaJj8PiueGKuo8huNRshkMtja2pqp/NPEEwkI5lpUR7DtiqQwPcJ0QWc0GiEej+P09FSmY1WrVZle5/P50G63MR6PzaPpiqAJf0IX6Ug0AVOzaT0d+CapV95XsFDuFii5V2riCYCY8ZMEppIfmE4m1J0evP56gA8H/fT7fRQKBQyHQ/T7fVG+8jHMeXXLnms8z/fKx92kNnYjngzXBsp7O52Ox/TQcHtAJj4cDns8lTQ0q69BaWoymUQmk0G1WsXR0REODw/Rbrelj3lzc1Na1iKRCLrd7rnJZkQ8Hsev/uqvot/v49mzZ8jn8/joo49mTmFaBLY2uGbadwF6io4mlHR1B/AeAvTjAMh16vV6UrGbRzy5FdRIJIJ2uy2KJyZdbqudbtvTEuV5xJObMPA9EnftOhsMs0DSaDgcSpvAvFYuDa7PwWAAn88nh+FsNotwOIx8Pi++GIbVwfaJzc1NDIdDFAoFZDIZ5HK5uYSA3+9HJpNBIpFANptFqVTCgwcPcHh4iF6vh3g8jmKxiPX1dVEUs+LOw9FgMJB9v1KpYDgc4sMPP0QsFvO02n3729/2qNy492riiYekarUqKixCq3e4n8fjcc/e/j4r4bRBtCYV5h0QdSymIsbv9yORSCAWi8nBtlwuS9ucNh4mBoMBgsEg1tfXpZWWimWiVCqZ0umKodtbCeY22uOJ1137tNnZ6epBskaTN8DUw87NL7kH6jyX1zYUCiGXywnxxHY73VUATMlnFg56vZ6oXbVQw/XO1S2YbvG1VCqdI8neNYx4MlwrSCjcpEVgWB70eKIh5SykUimkUqlzGzM34o2NDTx//hwbGxs4ODjAwcEBQqEQhsMhqtUqqtUqCoWC9CxfpFIpFApiJJ7L5cQod1VF3TLT+t4nuIQN1U06SWWF2wXXLwMeDwhUOTA4h8NhUTlqA3AN/iylxjpIuq12gJd4WqR44uFHV4c1jHgyGLxVUw4ZWNYcWBsjcx3m83khsYvFoh2SLglOEQuHwygWi0gmk6ImW+SFRcKp0+kgkUjgwYMHaDabSKfT0qZ3//595Uc4bdHTigtgQoI8evQIAETp7PP50Gg0RKnKfVZf51wuh1gsJrE7m83OnNIGeImnVCqFRqMBAO89YakPsoyBsxQWBAlCd/gHh5qwTa9Wq4nvFidfkUzU0JYJLsFnpNPVQ5MH2hPI9XhyjeZvGonwvoK5aLFYxNHRkRRldHvcrMcD5wcBcOhNPB6Xorj2fWIuygE9rVYL+XweL1++BAAP8USFKXC+ED9r77iJea4RT4ZrhyWitxeUcy+qhlOpNIt4IiF0//59NBoNlEolHBwcIJPJIBAIiB8IvUHc55gXcMvlMsrlMsbjMVqtlnkTLAHdagdMvTt6vZ5cq1ktk8B54olBcTAYSKWbifBF4GNYidVJuL6G8xRP+ndw32sqlUKr1RKz1FQqhWazaW2+BsPfwJXrz5qoNQ80Rh6NRshms+h0OojFYiiVSp7nNqwOmoNvb28DmKhQGD8XHSb0VLRcLicH2EqlgtPTU5RKJTx69EiUafogpQ2NaZZLbzwaS5+ennqGP9B8V19rTkbKZrPnVB2E61cETOIID9bvs9oJ8K6NTCYjk+XmXVtt9M3DLP2carWatPnoAhrzJxJPmtCg5UGr1TKD6ncAKk2pUtGtkK6Pj96PbyKR8D6C+1ssFhNvPe6Druk+MCUEtfE4PbtIFhWLRRQKBfT7fcmdk8kkTk5OhPBn610qlRLlYaFQkDx5VqudHlRwG3A73qXBYLgRCIVC4ikw7/v0jnAPL9yUh8MhMpkM4vG4TFLq9/sol8sYDoeo1WpIpVJIJpNzq6Tz4PP5LIlaESRytOSX1yoej888NMxSPNEgkfdGPB6XIKwTKff5SALR5J0HDpcc0om6Vk/Nm2oHnB8NSxXd++wdYjCsAtevTX/tInC/6Pf7nrHuRji9OdiSUS6Xsbe3J8QQSfR58Pl8KBaL+Oabb1AsFjEajdBsNrG2toZQKIRqtYpvfetbWF9fx+HhoRyYtHGtVqwCkMml3G+pUKYCR7dpz3o/s6A9wvg4HvTuAjThS+PiRe2F2gOLhR22YKZSKRSLRfT7fU+8YxxnUYfEE0nF6xidbpgNTR7oHGZWYS0Wi4kS0Iin6wP3QRYtQ6GQdFS465RrjddT76d6b2NhgH63JycnCIVCyGazqFQq2NvbQzQaFb/F8XiMtbU1ya9dtb9ur7st94YRTwaDYWmEQiGR+88CFVGsXGpw8+31eojFYjJVZzgcotls4uHDh6hWq2g0GtJO4G6kRhi8PcxqedOjYAOBwIXEE8Gg2mw24ff7Ua1WkcvllnrdaDSKZDIp7SDZbFbUVroaru8nTTxpY+NlDryWaBsMU7gksjspchFIPJ2ennq83QxvDhL39N4JhUI4OztDsVi88PpkMhmUSiUZ531ycoJyuYzT01PE43Ekk0nPnklSg+QjD7p+v1+ILj1KXO/Pl73evFf0MIq7BJd4ArwG4rPAQ+toNEI4HBbDd5q3dzqdc+3pJJ6ASeyjabh1HrxbaOJJm4kDOJfPUL3I9lnD9YCEEKdHknxPJBJzOzqCwaCnHQ6AEL1sie31ekgmk1KsSaVS0p4MQPLuYDCISqXiyaU18UQzct4nt4W0N+LJYDAsDVbkaMStp9EBkw0zk8nM9AbSzPxoNEKlUpEq3c7ODiqVCtbX18VUjxWFQCAg0nJrn3t70K124/FYVGo0BOZkpWWIp3A4jGg0imazCQAe1dmiCYhEqVQSUpGyZh6E9PPokcP8mvZxsmTaYFgN7qSsVdRK2tvNHVBgeDOEw2Gk02kkk0nxVwoGgyiXyxf+LFs2+v0+Hjx4gEQigRcvXoi5uFZY6AEN2WwWkUgE6XQaR0dHGI/H8toE7xf6gXFPvkxrXDgcNuLpb7zV0um0x3dpFtgCqafJusSxzrv0930+H3K5HKrVqmeSluHdYJYfEABPfqO/HovFbg2x8L6gUCig3W7j008/RTqdRqfTkY6NWbkm16eefMf22UgkglwuJ4SRJhtjsRiy2ayQ0O5eykl3wPkhPfF4HIlEAvl8/tbEXiOeDAbDSojH42Ieroknn8+HdDotHlDz/Jko9w4Gg7h37x7a7Taq1SqePHmC0WiEZ8+eYTgcyuabz+dxcnJyYVJmuDxINoVCIeTzeQyHQ5RKJZHnu3C/xp70/f19BINBjzmx+9hZz5dMJmWqnU6IdXDWbXv6ayQ63Ql3BoPhYjCBnjc5dBFIFutRzrYG3w64t5XLZTx58gStVguFQsEzfWzRz8ZiMVEXP3z4EL1eD51OR6rpmqjQygqa2iaTSWnjarVashe7viL0IbkM6R+LxdBqtQDcPTWz661GVcUisCBDnxedY80jnnhdqMTg9414erfQtgZ6Der8xgpp7xbBYBD5fF72PSqU5hm8s82c1zQcDuP09BSZTAYPHjxArVbztOTp1wmHwygUCuh2u56CKzBZq1zfruLJ7/d7PKBuA4x4MhgMKyGZTCKfzyMajeL09FS+riu0rIRqzJpKxkkPw+EQvV4Pfr8fp6enHml/KBRCsVi8pt/u7kBfn9FohEQigWKxiFqthnQ6fc7AUMMlFSn7f/jwoaiflnldgmNfh8Ph3Ol37vvl13w+39zWT4PBsBjuWl7FoJRDHLQp9W2put4G5HI51Ot1/NIv/RKOjo4QjUaX8jD0+XyIxWIYj8dSSOBUO5KDs4gnYBqfXTKJxJM7yvtNDG1DoRDK5bLHG/CuQOdDehz6IszKqwBI0QbAzBafbrcrHmG8XrfFiPh9BT9/ThLW120V6wDD1UHvdePxWPLTeQM4gsGg/IlEIsjn8xgMBkLi07uJRVT+DAc4MJ9lS+xwOPR467nvbVVPxpsC23kMBsNKiMViSCaTiEQiIpWn6V4+n0c6nZ5ZEXD/z4odW7QoJeVIUZMVXx9YCU2lUkgkEshms2i32wBmBzUGXiZIrJ6SANJJrQ6YF6kh3MfOUjwBmEtOGQyG1eCaPK9yIPX7/YhGo7IeE4nErUuCbzISiQTW19dxdnYmhNMyShVNyGsykHFZkx1a1Uq1hXvg4r/d13gb4EHtrkHHN7YbXqRwoccmMCkAsp2S98Qs4jcajaLRaMjgFQ7xsNj5buEOctFKwmWJSMPVQl+T4XAo5t7zFJ7aJzUcDkvXRq1WQyQSOXcuisfjnmEcPANxOuVgMEAsFvMQT67iCbh9yri7t9sbDIY3AnuV0+m0VNJYiaU035WSAtNNXMtRI5GIkBWDwUCq57Om4hneLlwFEQ8A8XhczBEXJT7at4mJ7JsGQm0UzsoPWzH0ezbiyWB4ewgEAnLYWaUFh9N+Tk9PPdVcw9sDTcWJZUka7qVUU4TDYfFs0kbG7j6viSa9xwcCATkY6dcwXB40Gl5WuUAjYqonGGf59yzVWDqdxsHBASKRiEwMttzq3YPXgG1Z2pyaRORdJGRvErge2WbH1rZ5iieq/VmID4fDMoCBvrh8DmCyNkulEnZ3dwFMlW70hWIs1kVXvSdzH79tbcp2VxsMhpXAKWTpdBqNRkP8mOLxOKrVqjD0syafAdO2KhIdfDwVNEyuLDm6evBwoY1K6Tmhg90sJBIJNJtNqeoUCgUcHh6eS37fRPGUTCZxdnbmmfoDnDdYNBgMl4f2kFhV8cTJZ4FAQEzGDW8PmghcZWqgJp6AydCGwWAglXTAq3Zy/fP01/hvDZtg+OZwc5yL1p42LgbO+wPNajlPp9N49OgRRqMRksmkxcwbAp/PJ/5BjUbD08J1GfWp4e1Dt8PqNTeP6InFYgiHw9IRwgE5tVoNm5ubMsWT15jnJK7JeTF4luKJAwZmPf6m43a9W4PB8M4RjUaRTqeRz+dxfHyMbrcrX8tkMojFYgsVT8C0zQ6YJNasDHCinSmergf6sEHybzQaLaV4SiaTonYDJlWXSqWysCXjMq12pVLp3Pe1KspgMLwZ0um0EA6rEk8APO1ZRjy9XWg16SpedvraAJAppXooCNu23IPNLE8RfV2z2Syi0ehSRueG+dBr7aJ4C0ynX9XrdSGgksmkjGKflzMlEom3+r4NbwfMnTqdjnicuveE4d1hHvE0j3APh8PIZDKe6XXf+973sL29LYV2Xuc3JZ5Ifs0bAHSTYcSTwWBYCaFQCPF4HLlcDvF4XIiibDaLbDaLWCw28/DCzdOVlUciEU8VlsmxBd3rg662UfGke89ngQa2GrMev0pQdMnJec9lrXYGw9tDIBDwTKJcFprcuK1Gpzcdfr8f5XIZnU5nJQKB10FPSPL7/aIi1USWjs3u3jpL8RSLxS51vxi8cCfQLYNyuYx6vY5+v+8hnwy3F9FoFL1ezzMN+jYSCu8btA8br0c0Gp27D+trNx6Pkc1mkc/nkclk5NzU6XQ8/kzabJxnIPfso4kn7s/xeByZTAaRSOTWxVwjngwGw0qIRCKIxWLIZDIoFAoYjUYoFAp4+PAhCoUCQqHQ3CRKe4lwcw2HwwgEAojFYkin02i323OntxjeLnQwo18LlU9XMRp9VcXTove7zPMZDIarwyxvICsYvH2w/XwVzFOjhUIhVCoVj9eIJp5YiQe8fiLuhDvDm0O3pbNl/SIkEgmk02k0m02ZWme43UgkEuj3+4hEIuLnZtf1ZkAXYyuVinjYznsslaXtdhvj8Vj8nkjU6xZl/nvWlGjtpzfP44k2JbcNRjwZDIaVEA6HZfpZOp3GeDzGgwcP8MEHHyCdTi+UomovEUpF2UowGAxwenrq+Z7hauEST6FQCLlcTvyb3sYBQwfGi55vWeJp2eczGAxXCz3d0szFbw7cVjv9tUXjueeRT6u0TBuWg8/nW1nN5vf7kc1mZc0tS1gZbi58Ph9yuRzG47EYTafT6Xf8rgzAeeXoosIKuwaCwSByuRwymcy5FlrajBSLRYRCITx//lwUULqNThNP2jOXj7nNPqdGPBkMhpUQiUQQDocRCoVQKBQwHo9Rq9VQqVSkPWsR8dTtdgF4e5Rpuqfb7QxXDx3MWFVhdUd//01wWY+nWaq5Rb5hBoPh+hEMBpdKyg3Xi1ltkPOuj9vKofdhXWF3n9vw5ggGgyuRDMyvisUiAPNvep9AIhKwNXZT4O6Zi2KcJoji8bh0DcwrovIPH0fCfxmPJyOeDAbDnUE4HEY4HEatVgMwMZkulUpIJpPSIjev1S4Wi6HRaCAUCnlGlcZiMfR6PZydncnoZ8P1gSO3XfPut538rPJ8s8hLI54MhpuFYDAo7SFGPN0c8FpoImkR8QTAU3Xn/93HALbvvkvwGjLHsmvxfsGu583CKsRTKBSSYUnMp10V8KyWOdfrbZFXKn/uNttNGPFkMBhWAlVNtVoN2WwWX3/9tbTeDQaDhYqnQCAwc/IZPQt6vZ4Y8RmuHq5nEoMqZb5vIwnSz3HR81Hxpt/bvOea9xiDwXB9uIxBsuHqsajVzsUsc3FiVmXdrvO7gxVfDIbrg97rqE6aB7/fj7W1NZycnEgRfdGUZ61E5euEw+GFNhOmeDIYDHcOPp8PkUgEoVAIrVYL0WgUmUxGVEp6E52FWRt3OBxGPp/HcDiU5zZcPdxgxmvzNltn9HNcFCSj0ShOT0/n3j+WdBsMNwt6r7a2n5sDdy/XX5sF7fHE/+sptACQzWbR7XZtito7xLzpwAaD4e1D234sM2mQnk7j8Xhmq52rLuX/C4WCp90ukUjg9PQUuVzO83MsDBjxZDAY7hSi0SjC4TBGoxGi0ShCoRCy2Sx2dnZkxO8qiEQiCAaDsrFbRfV64AatVWTFy2IVxVM8Hoff75/bamnm4gbDzUI4HEYul0MoFLJWuxsE7RuivzYL8xRPbqtdPB5HPB6/ujdtWArhcFjaW82WwGC4OnDf63Q6S3mxcdKc9k2dBZc4oppqOBzC5/Mhk8kgk8l43of+udtMPNvpzmAwrIx4PI5QKITRaIRIJIJcLodYLIbRaHRp4om4rSNCbyPcz9kl/N428bTMdV1kLG+tdgbDzUMsFnvXb8EwA8FgUNqmZ7V9ECSeaEQ+y8zW9tqbAx2XjXgyGK4WmUwGqVRqqXw4GAwiGo2i1WrJuWbegB13b13k2/Q+TbW7fVSZwWB45yA5xKSH/k7j8fhSlW+Ok00mkx6W33C1cIOWTmIXVWtWwSqKp1Wea960EIPBYDB4CwmLCApNMmnyiV8z3CyQ6F2m9cdgMLwZLvJ2ch+bzWaRy+Vmrs9ZrXbLkPxmLm4wGO40UqkUgIkpeCKRQCAQQK/XQyAQkMl2qyIWi1nl/JrhXqdQKIRerwfg7U2o0s/ztokng8FgMMxGKBRCt9sFcLEyxq26z/u+4d0jEomgWCxaa6vBcAPh9/tlbV7k8TQLq5iLW6udwWC4E6ChOGX8/X4f/X5fjMcNtwOziCfibZGAbzMw6ucyHzCDwWCYj0QigV6vh16vt7CF2a26W6vdzYe12BkMNw+z9s5Z0N9bJkd2W/RM8WQwGO4UYrEYwuEwSqUSTk5OMBqNZHyoEU+3B7PMxfP5PIDFXkuXfY23QUKFQiEMBgNks9k3fi6DwWB4X+Hz+WQ/v+hx2lzc2usMBoNhdbjEk9tuN8vjaRnvUvfnTPFkMBjuFILBIDKZDOr1OnK5HDqdDk5PT61d7pZhVv/5VRCHuVwOw+HQo6i6LIrFokwMMRgMBsObQRNPLulkiieDwWBYDi7xFA6H30qrHb/O4oApngwGw52C3+9HIpFALBbD8fEx2u02gIn82xRPtwfzjA/fNt4mGWmm4gaDwfB2oYmnWVV5g8FgMFwMFkVHo9FSxNOy05r9fj+Gw6FHlXobC7BGPBkMhkshGAyi1+shHo9jOBwCAOLx+FtRtRiuB26Au41BzGAwGAyXx7zWDk06GdlvMBgMF8Pv9yOXy8Hv98+dDj2PeFq0z5J40h5PtzFnv33v2GAw3AjQ3DmVSsnmWqvVLEG9RTDiyWAwGO42Znk8XZca1mAwGN4n0LKCRfiLPJ7mfd+FVlJZq53BYLhz4KY6GAzw8OFD9Pt9lEqld/yuDKvArbTcxiBmMBgMhsvD9XiyOGAwGAxvH7Na7Zbdb/k4a7UzGAx3EhznOxwOEQwGzVT8FiIQCMi/b2MAMxgMBsObQyue+P9lK/EGg8FgmGAZtehlW+0AL/F0G/dlO2kYDIZLIRQKeTY983a6fdDEk5nIGgwGw92DJpn0oUZ/32AwGAwXYxHxNEvxpPPwZYgneurqr90m3L53bDAYbgzi8bj8O5lMvsN3YnhTGPFkMBgMdw8u8eR+zWAwGAzLYRniCcDKiid+bzAYXPjYmwxrtTMYDJdGOp0GMDEap9m44XbCiCeDwWC425hFPN3WA47BYDC8a8xTPBGrttqReNJKqdsEOykaDIZLw+fzIZPJvOu3YXgD0NvDWiUNBoPh7uGiVjuDwWAwLIdVPZ5WbbVjceC2Ek/WamcwGAx3GMViEdFoFLlc7l2/FYPBYDC8A/BQoyfbmeLJYDAYVoPru/S2Wu3c572N/k6AKZ4MBoPhTiMUCiGfz7/rt2EwGAyGdwRNPI1GI/j9fiOeDAaDYUUs49PkKp6oYlpEJrnfM8WTwWAwGAwGg8FguFVw2zhuazXdYDAY3iUWKZhmEU/68YvIJNdH14gng8FgMBgMBoPBcKvA1jrt72SKJ4PBYFgN81rrNOZ5PC0ik3w+n+f7t7U4cDvftcFgMBgMBoPBYHhjaE8nANZqZzAYDJfAMoonYLbH0yoqpts6EMiIJ4PBYDAYDAaD4Y7CJZ6WqdobDAaDwYtFe+dFrXZuO52LWCwGYEI6XfTYm4rb+a4NBoPBYDAYDAbDG2MW8WSKJ4PBYFgNb+LxdFH7XDKZRCAQEALqNsKIJ4PBYDAYDAaD4Y7CJZ74NeD2eokYDAbDdWNVj6dgMIh0Ou1pb54Hv9+PRCLx9t7sO4ARTwaDwWAwGAwGwx2FSzy9Dya2BoPBcN1YRB7N8njy+XxIJpNX/r5uCox4MhgMBoPBYDAYDAC8XiPWamcwGAzLYVHrnG61m/eY9x1367c1GAwGg8FgMBgMApdc0sTTXTsYGQwGw2Wh99JIJDL3cVrxdJdg0cRgMBgMBoPBYLijcFvtTPFkMBgMq0MT9S7xNGsvvWvEvrXaGQwGg8FgMBgMdxQu8RQKheTfd+1gZDAYDJeF3+9HPB6Hz+fzEPjAdJ+9q2onwIgng8FgMBgMBoPhzkITT36/H8FgcOa4b4PBYDAsRjabnfs9TTzdxb317v3GBoPBYDAYDAaDAYCXeHIr9XexKm8wGAxXAU023cW91Ygng8FgMBgMBoPhjsIlngKBgHzvLlblDQaD4SqwaOrdXcDd+40NBoPBYDAYDAYDAC/Z5Cqe7uLhyGAwGK4Cd13xZB5PBoPBYDAYDAbDHYXP55MDEdVP5XIZ4/H4Th6ODAaD4Sqg99O7SOob8WQwGAwGg8FgMNxRzGqvcycyGQwGg+HNYK12BoPBYDAYDAaD4U7CbbUzGAwGw9vHXW+1M+LJYDAYDAaDwWC4owgEAp4DEcd9GwwGg+HtwRRPBoPBYDAYDAaD4U5Ct9WNRiNP253BYDAY3j4ikci7fgvXDmvgNhgMBoPBYDAY7jjy+TwGgwFisdi7fisGg8Hw3oFkUzQaRSgUesfv5vphxJPBYDAYDAaDwXCHkc1mcXx8jEql8q7fisFgMLyXCAaDqFard9LfCTDiyWAwGAwGg8FguNOIx+OIxWJ39kBkMBgM14G76O1E3N3f3GAwGAwGg8FgMAC4m1OWDAaDwXA9MOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDAaDwXAlMOLJYDAYDAaDwWAwGAwGg8FwJTDiyWAwGAwGg8FgMBgMBoPBcCUw4slgMBgMBoPBYDAYDP//9u4Yt4kgCsDw2kmckp4jcBVEzzW4RLocgIaKE1BQIAQ9HXegp6HaxDsUtMygefJ7rOD7yok0tjS7WetX8gyQQngCAAAAIIXwBAAAAEAK4QkAAACAFMITAAAAACmEJwAAAABSCE8AAAAApBCeAAAAAEghPAEAAACQQngCAAAAIIXwBAAAAEAK4QkAAACAFMITAAAAACmEJwAAAABSCE8AAAAApBCeAAAAAEghPAEAAACQQngCAAAAIIXwBAAAAEAK4QkAAACAFNejH55bf/3ua8bboWd0FrMezv315/fz+xE3OotZ6/r7i2Fd23J7+2V+Q8JGZxGydS6I7byc372K7cm8wTnE9utcD1tblvcfYnsyb3QOAWvr3P+tLU8+fwztSczoLGY9bI/d9WdvX0zvR9zoLCJGv9rf3P0I7cm8Sz9il8etu/795evgpkwbnENIW7vr3z49je3JvME59AzD00gkeLB/keDB/oWDB/sX/kTGrgWjB/sWCR7sXzR4sH8esf+oaPRg3wbRg7/Pv9oBAAAAkEJ4AgAAACCF8AQAAABACuEJAAAAgBTh4eJXh0u+Df6kapj7zVXN6/BL1TD308kNW6l0mPvRTVumcsrs0T1bpnCQ++ngXCtVDXO/OYY/ThNQOczdI7ZO6SD3a397UaZykPvhVPda/7vAIPdDa75iBQAAAIDLk3sBAAAASCE8AQAAAJBCeAIAAAAghfAEAAAAQArhCQAAAIAUPwGsPsOK0oT3lgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "id_b = np.unique(bouts.df.label.category[bouts.df.label.proba > 0.5]).astype(\"int\")\n", "\n", "fig, ax = plt.subplots(facecolor=\"white\", figsize=(15, 4))\n", "\n", "ax.spines[\"top\"].set_visible(False)\n", "ax.spines[\"right\"].set_visible(False)\n", "ax.spines[\"bottom\"].set_visible(False)\n", "ax.spines[\"left\"].set_visible(False)\n", "ax.set_xticks([])\n", "ax.set_yticks([])\n", "G = gridspec.GridSpec(1, len(id_b))\n", "ax0 = {}\n", "for i, b in enumerate(id_b):\n", " ax0 = plt.subplot(G[i])\n", " ax0.set_title(bouts_category_name_short[b], fontsize=15)\n", " for i_sg, sg in enumerate([1, -1]):\n", " id = bouts.df[\n", " (bouts.df.label.category == b)\n", " & (bouts.df.label.sign == sg)\n", " & (bouts.df.label.proba > 0.5)\n", " ].index\n", " if len(id) > 0:\n", " ax0.plot(sg * bouts.tail[id, 7, :].T, color=\"k\", alpha=0.1)\n", " ax0.set_xlim(0, tail_segmentation_cfg.bout_duration)\n", " ax0.set_ylim(-4, 4)\n", " ax0.set_xticks([])\n", " ax0.set_yticks([])\n", " for sp in [\"top\", \"bottom\", \"left\", \"right\"]:\n", " ax0.spines[sp].set_color(bouts_category_color[b])\n", " ax0.spines[sp].set_linewidth(5)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "megabouts_dev", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }